DEFRA. Strategy for Achieving Officially Bovine Tuberculosis Free Status for England: The ‘edge area’ strategy. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/300447/pb14088-bovine-tb-strategy-140328.pdf (2014).
Campbell, E. L. et al. Interspecific visitation of cattle and badgers to fomites: A transmission risk for bovine tuberculosis?. Ecol. Evol. 9(15), 8479–8489 (2019).
Google Scholar
Roberts, T., O’Connor, C., Nuñez-Garcia, J., De La Rua-Domenech, R. & Smith, N. H. Unusual cluster of Mycobacterium bovis infection in cats. Vet. Rec. 174(13), 326–326 (2014).
Google Scholar
Phipps, E. et al. Bovine tuberculosis in working foxhounds: Lessons learned from a complex public health investigation. Epidemiol. Infect. 147, 1–6 (2019).
Google Scholar
Delahay, R. J., De Leeuw, A. N. S., Barlow, A. M., Clifton-Hadley, R. S. & Cheeseman, C. L. The status of Mycobacterium bovis infection in UK wild mammals: A review. Vet. J. 164(2), 90–105 (2002).
Google Scholar
Fitzgerald, S. D. & Kaneene, J. B. Wildlife reservoirs of bovine tuberculosis worldwide: Hosts, pathology, surveillance, and control. Vet. Pathol. 50(3), 488–499 (2013).
Google Scholar
Skuce, R. A., Allen, A. R. & McDowell, S. W. J. Herd-level risk factors for bovine tuberculosis: A literature review. Vet Med Int 2012, 621210 (2012).
Google Scholar
Ayele, W. Y., Neill, S. D., Zinsstag, J., Weiss, M. G. & Pavlik, I. Bovine tuberculosis: An old disease but a new threat to Africa. Int. J. Tuberc. Lung Dis. 8(8), 924–937 (2004).
Google Scholar
Gallagher, J. & Clifton-Hadley, R. S. Tuberculosis in badgers; a review of the disease and its significance for other animals. Res. Vet. 69(3), 203–217 (2000).
Google Scholar
Allen, A. et al. Genome epidemiology of Mycobacterium bovis infection in contemporaneous, sympatric badger and cattle populations in Northern Ireland. Access Microbiol. 1(1A), 385 (2019).
Google Scholar
APHA. Bovine Tuberculosis in England in 2020—Epidemiological analysis of the 2020 data and historical trends. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1027591/tb-epidemiological-report-2020.pdf (2021).
DAERA. Tuberculosis disease statistics in Northern Ireland 2022. https://www.daera-ni.gov.uk/publications/tuberculosis-disease-statistics-northern-ireland-2022 (2022).
Woodroffe, R. et al. Effects of culling on badger Meles meles spatial organization: Implications for the control of bovine tuberculosis. J. Appl. Ecol. 43(1), 1–10 (2006).
Google Scholar
Byrne, A. W., Paddy Sleeman, D., O’Keeffe, J. & Davenport, J. The ecology of the European badger (Meles meles) in Ireland: A review. Biol. Environ. 112, 105–132 (2012).
Google Scholar
McDonald, J., Robertson, A. & Silk, M. Wildlife disease ecology from the individual to the population: Insights from a long-term study of a naturally infected European badger population. J. Anim. Ecol. 87(1), 101–112 (2017).
Google Scholar
Macdonald, D. W., Newman, C. & Buesching, C. D. Badgers in the rural landscape—conservation paragon or farmland pariah? Lessons from the Wytham Badger Project. Wildlife conservation on farmland 2, 65–95 (2015).
Judge, J., Wilson, G. J., Macarthur, R., McDonald, R. A. & Delahay, R. J. Abundance of badgers (Meles meles) in England and Wales. Sci. Rep. 7(1), 1–8 (2017).
Google Scholar
Feore, S. & Montgomery, W. I. Habitat effects on the spatial ecology of the European badger (Meles meles). J. Zool. 247(4), 537–549 (1999).
Google Scholar
Reid, N., Etherington, T. R., Wilson, G. J., Montgomery, W. I. & McDonald, R. A. Monitoring and population estimation of the European badger Meles meles in Northern Ireland. Wildlife Biol. 18(1), 46–57 (2012).
Google Scholar
DAERA. Farm animal populations: Cattle populations in Northern Ireland from 1981 to 2019. https://www.daera-ni.gov.uk/publications/farm-animal-population-data (2019).
DEFRA. Livestock numbers in the UK (data to December 2019). https://www.gov.uk/government/statistical-data-sets/structure-of-the-livestock-industry-in-england-at-december.39 (2020).
DEFRA. Setting the minimum and maximum numbers in badger cull areas in 2021—Advice to Natural England. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1015421/tb-min-max-numbers-2021.pdf (2021).
Griffin, J. M. et al. The impact of badger removal on the control of tuberculosis in cattle herds in Ireland. Prev. Vet. Med. 67(4), 237–266 (2005).
Google Scholar
Ham, C., Donnelly, C. A., Astley, K. L., Jackson, S. Y. B. & Woodroffe, R. Effect of culling on individual badger Meles meles behaviour: Potential implications for bovine tuberculosis transmission. J. Appl. Ecol. 56(11), 2390–2399 (2019).
Google Scholar
Olea-Popelka, F. J. et al. Targeted badger removal and the subsequent risk of bovine tuberculosis in cattle herds in county Laois, Ireland. Prev. Vet. Med. 88(3), 178–184 (2009).
Google Scholar
Donnelly, C. A. et al. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439(7078), 843–846 (2006).
Google Scholar
Byrne, A. W., White, P. W., McGrath, G., O’Keeffe, J. & Martin, S. W. Risk of tuberculosis cattle herd breakdowns in Ireland: Effects of badger culling effort, density and historic large-scale interventions. Vet. Res. 45(1), 1–10 (2014).
Google Scholar
Wright, D. M. et al. Herd-level bovine tuberculosis risk factors: Assessing the role of low-level badger population disturbance. Sci. Rep. 5, 1–11 (2015).
Google Scholar
Jenkins, H. E., Woodroffe, R. & Donnelly, C. A. The duration of the effects of repeated widespread badger culling on cattle tuberculosis following the cessation of culling. PLoS ONE 5(2), e9090 (2010).
Google Scholar
Tuyttens, F. A. M. et al. Spatial perturbation caused by a badger (Meles meles) culling operation: Implications for the function of territoriality and the control of bovine tuberculosis (Mycobacterium bovis). J. Anim. Ecol. 69(5), 815–828 (2000).
Google Scholar
Carter, S. P. et al. Culling-induced social perturbation in Eurasian badgers Meles meles and the management of TB in cattle: An analysis of a critical problem in applied ecology. Proc. R. Soc. B. 274(1626), 2769–2777 (2007).
Google Scholar
Donnelly, C. A. et al. Impact of localized badger culling on tuberculosis incidence in British cattle. Nature 426(6968), 834–837 (2003).
Google Scholar
Vicente, J., Delahay, R. J., Walker, N. J. & Cheeseman, C. L. Social organization and movement influence the incidence of bovine tuberculosis in an undisturbed high-density badger Meles meles population. J Anim Ecol. 76(2), 348–360 (2007).
Google Scholar
Riordan, P., Delahay, R. J., Cheeseman, C., Johnson, P. J. & Macdonald, D. W. Culling-induced changes in badger (Meles meles) behaviour, social organisation and the epidemiology of bovine tuberculosis. PLoS ONE 6(12), e28904 (2011).
Google Scholar
Kowalczyk, R., Jȩdrzejewska, B. & Zalewski, A. Annual and circadian activity patterns of badgers (Meles meles) in Białowieża Primeval Forest (eastern Poland) compared with other palaearctic populations. J. Biogeogr. 30(3), 463–472 (2003).
Google Scholar
Smith, G. C., Delahay, R. J., McDonald, R. A. & Budgey, R. Model of selective and non-selective management of badgers (Meles meles) to control bovine tuberculosis in badgers and cattle. PLoS ONE 11(11), e0167206 (2016).
Google Scholar
Garnett, B. T., Delahay, R. J. & Roper, T. J. Ranging behaviour of European badgers (Meles meles) in relation to bovine tuberculosis (Mycobacterium bovis) infection. Appl. Anim. Behav. Sci. 94(3–4), 331–340 (2005).
Google Scholar
Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. 23(20), 915–916 (2013).
Google Scholar
Ellwood, S. A. et al. An active-radio-frequency-identification system capable of identifying co-locations and social-structure: Validation with a wild free-ranging animal. Methods Ecol. Evol. 8(12), 1822–1831 (2017).
Google Scholar
Noonan, M. et al. A new Magneto-Inductive tracking technique to uncover subterranean activity: what do animals do underground?. Methods Ecol. Evol. 6(5), 510–520 (2015).
Google Scholar
Schütz, K. et al. Behavioral and physiological responses of trap-induced stress in European badgers. J. Wildl. Manag. 70(3), 884–891 (2006).
Google Scholar
Clinchy, M. et al. Fear of the human “super predator” far exceeds the fear of large carnivores in a model mesocarnivore. Behav. Ecol. 27(6), 1826–1832 (2016).
Bidder, O. R. et al. Step by step: Reconstruction of terrestrial animal movement paths by dead-reckoning. Mov. Ecol. https://doi.org/10.1186/s40462-015-0055-4 (2015).
Google Scholar
Gunner, R. M. et al. Dead-reckoning animal movements in R: a reappraisal using Gundog. Tracks. Anim. Biotelem. 9(1), 1–37 (2021).
McClune, D. W., Marks, N. J., Delahay, R. J., Montgomery, W. I. & Scantlebury, D. M. Behaviour-time budget and functional habitat use of a free-ranging European badger (Meles meles). Anim. Biotelem. 3(7), 1–7 (2015).
McClune, D. et al. Tri-axial accelerometers quantify behaviour in the Eurasian badger (Meles meles): towards an automated interpretation of field data. Anim. Biotelem. 2(1), 1–6 (2014).
Google Scholar
Gaughran, A. et al. Dispersal patterns in a medium-density Irish badger population: Implications for understanding the dynamics of tuberculosis transmission. Ecol. Evol. 9(23), 13142–13152 (2019).
Google Scholar
Kelly, D. J. et al. Extra Territorial Excursions by European badgers are not limited by age, sex or season. Sci. Rep. 10(1), 1–2 (2020).
Google Scholar
Macdonald, D. W., Newman, C., Buesching, C. D. & Johnson, P. J. Male-biased movement in a high-density population of the Eurasian badger (Meles meles). J. Mammal. 89(5), 1077–1086 (2008).
Google Scholar
Courcier, E. A. et al. Evaluating the application of the dual path platform VetTB test for badgers (Meles meles) in the test and vaccinate or remove (TVR) wildlife research intervention project in Northern Ireland. Res. Vet. Sci. 130, 170–178 (2020).
Google Scholar
Menzies, F. D. et al. Test and vaccinate or remove: Methodology and preliminary results from a badger intervention research project. Vet. Rec. 189, e248 (2021).
Google Scholar
O’Hagan, M. J. H. et al. Effect of selective removal of badgers (Meles meles) on ranging behaviour during a “test and Vaccinate or Remove” intervention in Northern Ireland. Epidemiol. Infect. 149(1), e125 (2021).
Google Scholar
Roper, T. J. The structure and function of badger setts. J. Zool. 227(4), 691–698 (1992).
Google Scholar
DAERA. The Test and Vaccinate or Remove (TVR) Wildlife Intervention Research Project. Year 1 Report—2014. https://www.daera-ni.gov.uk/sites/default/files/publications/dard/tvr-year-1-report.pdf (2014).
Brown, E., Cooney, R. & Rogers, F. Veterinary guidance on the practical use of the BadgerBCG tuberculosis vaccine. In Pract. 35(3), 143–146 (2013).
Google Scholar
Magowan, E. A. et al. Dead-reckoning elucidates fine-scale habitat use by European badgers Meles meles. Anim. Biotelem. 10(1), 1–11 (2022).
Google Scholar
McGill, K. et al. Seroconversion against antigen MPB83 in badgers (Meles meles) vaccinated with multiple doses of BCG strain Sofia. Res. Vet. Sci. 149, 119–124. https://doi.org/10.1016/j.rvsc.2022.06.011 (2022).
Google Scholar
Gaughran, A. et al. Super-ranging. A new ranging strategy in European badgers. PLoS ONE 13(2), e0191818 (2018).
Google Scholar
Williams, H. J. et al. Identification of animal movement patterns using tri-axial magnetometry. Mov. Ecol. 5(1), 6 (2017).
Google Scholar
Brendel C, Helder R, Chevallier D, Zaytoon J, Georges JY, and Handrich Y. Testing a global positioning system on free ranging badgers Meles meles. Mammal Notes, The Mammal Society, Southampton. https://www.mammal.org.uk/wp-content/uploads/2016/04/Note–Brendel-MN-2012-1.pdf (2012).
Börger, L. et al. Effects of sampling regime on the mean and variance of home range size estimates. J. Anim. Ecol. 75(6), 1393–1405 (2006).
Google Scholar
Calenge, C. The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197(3–4), 516–519 (2006).
Google Scholar
Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7(9), 1124–1132 (2016).
Google Scholar
QGIS.org. QGIS Geographic Information System. QGIS Association. https://qgis.org/en/site/ (2021).
Fleming, C. H. et al. Rigorous home range estimation with movement data: A new autocorrelated kernel density estimator. Ecology 96(5), 1182–1188 (2015).
Google Scholar
Fleming, C. H. et al. Estimating where and how animals travel: An optimal framework for path reconstruction from autocorrelated tracking data. Ecology 97(3), 576–582 (2016).
Google Scholar
Fleming, C. H. et al. Correcting for missing and irregular data in home-range estimation. Ecol. Appl. 28(4), 1003–1010 (2018).
Google Scholar
Gula, R. & Theuerkauf, J. The need for standardization in wildlife science: Home range estimators as an example. Eur. J. Wildl. Res. 59, 713–718 (2013).
Google Scholar
Schuler, K. L., Schroeder, G. M., Jenks, J. A. & Kie, J. G. Ad hoc smoothing parameter performance in kernel estimates of GPS-derived home ranges. Wildl. Biol. 20(5), 259–266 (2014).
Google Scholar
Huck, M., Davison, J. & Roper, T. J. Comparison of two sampling protocols and four home-range estimators using radio-tracking data from urban badgers Meles meles. Wildl. Biol. 14(4), 467–477 (2008).
Google Scholar
Scull, P., Palmer, M., Frey, F. & Kraly, E. A comparison of two home range modeling methods using Ugandan mountain gorilla data. Int. J. Geogr. Inf. Sci. 26(11), 2111–2121 (2012).
Google Scholar
Woodroffe, R. et al. Ranging behaviour of badgers Meles meles vaccinated with Bacillus Calmette Guerin. J. Appl. Ecol. 54(3), 718–725 (2017).
Google Scholar
Signer, J. & Fieberg, J. R. A fresh look at an old concept: Home-range estimation in a tidy world. PeerJ 9, e11031 (2021).
Google Scholar
Woodroffe, R. et al. Badgers prefer cattle pasture but avoid cattle: implications for bovine tuberculosis control. Ecology 19(10), 1201–1208 (2016).
Hijmans RJ. Introduction to the geosphere package (version 1 .5–10). Cran (2019).
Dewhirst, O. P. et al. Improving the accuracy of estimates of animal path and travel distance using GPS drift-corrected dead reckoning. Ecol. Evol. 6(17), 6210–6222 (2016).
Google Scholar
QGIS.org. Working with vector data. QGIS Desktop 3.16 User Guide. pp 304. https://docs.qgis.org/3.22/en/docs/user_manual/index.html (2022).
Qasem, L. et al. Tri-axial acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector?. PLoS ONE 7(2), e31187 (2012).
Google Scholar
Wilson, R. P. et al. Estimates for energy expenditure in free-living animals using acceleration proxies; a reappraisal. J anim Ecol. 89(1), 161–172 (2020).
Google Scholar
RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Barton K. Package “MuMin”. Cran (2018).
Rogers, L. M., Cheeseman, C. L., Mallinson, P. J. & Clifton-Hadley, R. The demography of a high-density badger (Meles meles) population in the west of England. J. Zool. 242(4), 705–728 (1997).
Google Scholar
Macdonald, D. W. & Newman, C. Population dynamics of badgers (Meles meles) in Oxfordshire, UK: Numbers, density and cohort life histories, and a possible role of climate change in population growth. J. Zool. 256(1), 121–138 (2002).
Google Scholar
Kruuk, H., & MacDonald, D. Group territories of carnivores: empires and enclaves. In 25th Symposium of the British Ecological Society (1985).
Roper, T. J., Shepherdson, D. J. & Davies, J. M. Scent marking with faeces and anal secretion in the European badger (Meles meles): seasonal and spatial characteristics of latrine use in relation to territoriality. Behaviour 97(1–2), 94–117 (1986).
Sleeman, D. P. et al. How many Eurasian badgers Meles meles L. are there in the republic of Ireland?. Eur. J. Wildl. Res. 55(4), 333–344 (2009).
Google Scholar
Carter, S. P. et al. BCG vaccination reduces risk of tuberculosis infection in vaccinated badgers and unvaccinated badger cubs. PLoS ONE 7(12), e49833 (2012).
Google Scholar
Byrne, A., Parnell, A., O’Keeffe, J. & Madden, J. The challenge of estimating wildlife populations at scale: the case of the European badger (Meles meles) in Ireland. Eur. J. Wildl. Res. 67(5), 1–10 (2021).
Google Scholar
Minta, S. C. Sexual differences in spatio-temporal interaction among badgers. Oecologia 96(3), 402–409 (1993).
Google Scholar
Annavi, G. et al. Neighbouring-group composition and within-group relatedness drive extra-group paternity rate in the European badger (Meles meles). J. Evol. Biol. 27(10), 2191–2203 (2014).
Google Scholar
DEFRA. Monitoring regional changes in badger numbers. Research Project Final Report. http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&ProjectID=14237. Accessed 07 February 2023 (2009).
Johnson, D. D., Jetz, W. & Macdonald, D. W. Environmental correlates of badger social spacing across Europe. J. Biogeogr. 29(3), 411–425 (2002).
Google Scholar
Kruuk, H. Spatial organization and territorial behaviour of the European badger Meles meles. J Zool. 184(1), 1–19 (1978).
Google Scholar
Macdonald, D., Newman, C., Dean, J., Buesching, C. & Johnson, P. The distribution of Eurasian badger, Meles meles, setts in a high-density area: field observations contradict the sett dispersion hypothesis. Oikos 106(2), 295–307 (2004).
Google Scholar
Sleeman, D. P. & Mulcahy, M. F. Loss of territoriality in a local badger Meles meles population at Kilmurry, Co Cork, Irealnd. Irish Nat. J. 28(1), 11–19 (2005).
Byrne, A. W., O’Keeffe, J., Buesching, C. D. & Newman, C. Push and pull factors driving movement in a social mammal: Context dependent behavioral plasticity at the landscape scale. Curr. Zool. 65(5), 517–525 (2019).
Google Scholar
Cheeseman, C. L., Cresswell, W. J., Harris, S. & Mallinson, P. J. Comparison of dispersal and other movements in two Badger (Meles meles) populations. Mamm. Rev. 18(1), 51–59 (1988).
Google Scholar
Seebacher, F. & Krause, J. Epigenetics of social behaviour. TREE 34(9), 818–830 (2019).
Google Scholar
Allen, A. et al. European badger (Meles meles) responses to low-intensity, selective culling: Using mark–recapture and relatedness data to assess social perturbation. Ecol. Solut. Evid. 3(3), e12165 (2022).
Google Scholar
Loureiro, F., Rosalino, L. M., Macdonald, D. W. & Santos-Reis, M. Path tortuosity of Eurasian badgers (Meles meles) in a heterogeneous Mediterranean landscape. Ecol. Res. 22(5), 837–844 (2007).
Google Scholar
Sun, Q., Stevens, C., Newman, C., Buesching, C. & Macdonald, D. Cumulative experience, age-class, sex and season affect the behavioural responses of European badgers (Meles meles) to handling and sedation. Anim Welf. 24(4), 373–385 (2015).
Google Scholar
Conlan, A. et al. Potential benefits of cattle vaccination as a supplementary control for bovine tuberculosis. PLoS Comput. Biol. 11(2), e1004038 (2015).
Google Scholar
Gormley, E. et al. Oral vaccination of free-living badgers (Meles meles) with Bacille Calmette Guérin (BCG) vaccine confers protection against tuberculosis. PLoS ONE 12(1), e0168851 (2017).
Google Scholar
Benton, C. H. et al. Badger vaccination in England: Progress, operational effectiveness and participant motivations. People Nat. 2(3), 761–775 (2020).
Google Scholar
Source: Ecology - nature.com