Lauchlan, S. S. & Nagelkerken, I. Species range shifts along multistressor mosaics in estuarine environments under future climate. Fish Fish. 21, 32–46 (2020).
Google Scholar
Gao, G., Zhao, X., Jiang, M. & Gao, L. Impacts of marine heatwaves on algal structure and carbon sequestration in conjunction with ocean warming and acidification. Front. Mar. Sci. 8, 758651 (2021).
Google Scholar
Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proc. Natl. Acad. Sci. 112, E4065–E4074 (2015).
Google Scholar
Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).
Google Scholar
Morley, J. W. et al. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13, e0196127 (2018).
Google Scholar
Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 281, 20140846 (2014).
Google Scholar
Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).
Google Scholar
Cheung, W. W. L. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. https://doi.org/10.1126/sciadv.abh0895 (2021).
Google Scholar
Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. 106, 22341–22345 (2009).
Google Scholar
Pessarrodona, A. et al. Tropicalization unlocks novel trophic pathways and enhances secondary productivity in temperate reefs. Funct. Ecol. 36, 659–673 (2022).
Google Scholar
Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).
Google Scholar
Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).
Google Scholar
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).
Google Scholar
Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).
Google Scholar
Garrabou, J. et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Glob. Change Biol. 28, 5708–5725 (2022).
Google Scholar
Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).
Google Scholar
Cure, K. et al. Distributional responses to marine heat waves: insights from length frequencies across the geographic range of the endemic reef fish Choerodon rubescens. Mar. Biol. 165, 1 (2018).
Google Scholar
Jacox, M. G., Tommasi, D., Alexander, M. A., Hervieux, G. & Stock, C. A. Predicting the evolution of the 2014–2016 California current system marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00497 (2019).
Google Scholar
Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).
Google Scholar
Cavanaugh, K. C., Reed, D. C., Bell, T. W., Castorani, M. C. N. & Beas-Luna, R. Spatial variability in the resistance and resilience of giant kelp in southern and baja California to a multiyear heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00413 (2019).
Google Scholar
Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future. Oceanography 29, 273–285 (2016).
Google Scholar
Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 10, 19359 (2020).
Google Scholar
Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. 105, 1965–1970 (2008).
Google Scholar
Thompson, A. R. et al. Putting the Pacific marine heatwave into perspective: The response of larval fish off southern California to unprecedented warming in 2014–2016 relative to the previous 65 years. Glob. Change Biol. 28, 1766–1785 (2022).
Google Scholar
Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).
Google Scholar
Bates, A. E. et al. Resilience and signatures of tropicalization in protected reef fish communities. Nat. Clim. Change 4, 62–67 (2014).
Google Scholar
Behrens, M. & Lafferty, K. Effects of marine reserves and urchin disease on southern Californian rocky reef communities. Mar. Ecol. Prog. Ser. 279, 129–139 (2004).
Google Scholar
Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Ann. Rev. Mar. Sci. 5, 371–392 (2013).
Google Scholar
Caselle, J. E., Davis, K. & Marks, L. M. Marine management affects the invasion success of a non-native species in a temperate reef system in California, USA. Ecol. Lett. 21, 43–53 (2018).
Google Scholar
Micheli, F. et al. Evidence that marine reserves enhance resilience to climatic impacts. PLoS ONE 7, e40832 (2012).
Google Scholar
Olds, A. D. et al. Marine reserves help coastal ecosystems cope with extreme weather. Glob. Change Biol. 20, 3050–3058 (2014).
Google Scholar
Freedman, R. M., Brown, J. A., Caldow, C. & Caselle, J. E. Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci. Rep. 10, 21081 (2020).
Google Scholar
Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Cons. 236, 305–314 (2019).
Google Scholar
Kirlin, J. et al. California’s Marine Life Protection Act Initiative: Supporting implementation of legislation establishing a statewide network of marine protected areas. Ocean Coast. Manag. 74, 3–13 (2013).
Google Scholar
Saarman, E. T. et al. An ecological framework for informing permitting decisions on scientific activities in protected areas. PLoS ONE 13, e0199126 (2018).
Google Scholar
Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 14102 (2015).
Google Scholar
Hamilton, S. L., Caselle, J. E., Malone, D. P. & Carr, M. H. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. PNAS 107, 18272–18277 (2010).
Google Scholar
Wendt, D. E. & Starr, R. M. Collaborative research: An effective way to collect data for stock assessments and evaluate marine protected areas in California. Mar. Coast. Fish. 1, 315–324 (2009).
Google Scholar
Côté, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).
Google Scholar
Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).
Google Scholar
Li, L. et al. Subregional differences in groundfish distributional responses to anomalous ocean bottom temperatures in the northeast Pacific. Glob. Change Biol. 25, 2560–2575 (2019).
Google Scholar
Dawson, M. N. Phylogeography in coastal marine animals: A solution from California?. J. Biogeogr. 28, 723–736 (2001).
Google Scholar
Horn, M. H., Allen, L. G. & Lea, R. N. Biogeography. In The Ecology of Marine Fishes: California and Adjacent Waters (ed. Allen, L.) 3–25 (University of California Press, 2006). https://doi.org/10.1525/california/9780520246539.003.0001.
Google Scholar
Horn, M. H. & Allen, L. G. A distributional analysis of California coastal marine fishes. J. Biogeogr. 5, 23–42 (1978).
Google Scholar
Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).
Google Scholar
Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B 280, 20122829 (2013).
Google Scholar
O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).
Google Scholar
California Department of Fish and Wildlife. California Sheephead, Bodianus (formerly Semicossyphus) pulcher, Enhanced Status Report. (2021).
Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).
Google Scholar
Francour, P., Mangialajo, L. & Pastor, J. Mediterranean marine protected areas and non-indigenous fish spreading. In Fish Invasions of the Mediterranean Sea: Change and Renewal (eds Golani, D. & Appelbaum-Golani, B.) 127–144 (Pensoft Publisher, 2010).
Couce, E., Ridgwell, A. & Hendy, E. J. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Glob. Change Biol. 19, 3592–3606 (2013).
Google Scholar
Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J. & Saunders, B. J. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 18, 714–723 (2015).
Google Scholar
Trainer, V. L. et al. Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes. Harmful Algae 91, 101591 (2020).
Google Scholar
Gliwicz, Z. M., Babkiewicz, E., Kumar, R., Kunjiappan, S. & Leniowski, K. Warming increases the number of apparent prey in reaction field volume of zooplanktivorous fish. Limnol. Oceanogr. 63, S30–S43 (2018).
Google Scholar
Nielsen, J. M. et al. Responses of ichthyoplankton assemblages to the recent marine heatwave and previous climate fluctuations in several Northeast Pacific marine ecosystems. Glob. Change Biol. 27, 506–520 (2021).
Google Scholar
du Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C. & Cheung, W. W. L. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Glob. Change Biol. 27, 2608–2622 (2021).
Google Scholar
Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Change Biol. 27, 1859–1878 (2021).
Google Scholar
Oken, K. L., Essington, T. E. & Fu, C. Variability and stability in predation landscapes: A cross-ecosystem comparison on the potential for predator control in temperate marine ecosystems. Fish Fish. 19, 489–501 (2018).
Google Scholar
Baum, J. K. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009).
Google Scholar
Jacox, M. G. et al. Impacts of the 2015–2016 El Niño on the California current system: Early assessment and comparison to past events. Geophys. Res. Lett. 43, 7072–7080 (2016).
Google Scholar
Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00212 (2019).
Google Scholar
Field, J. C. et al. Spatiotemporal patterns of variability in the abundance and distribution of winter-spawned pelagic juvenile rockfish in the California Current. PLoS ONE 16, e0251638 (2021).
Google Scholar
Schroeder, I. D. et al. Source water variability as a driver of rockfish recruitment in the California current ecosystem: Implications for climate change and fisheries management. Can. J. Fish. Aquat. Sci. 76, 950–960 (2019).
Google Scholar
Echeverria, T. W. Thirty-four species of California rockfishes: Maturity and seasonality of reproduction. Fish. Bull. 85, 229–250 (1987).
Miller, A. & Sydeman, W. Rockfish response to low-frequency ocean climate change as revealed by the diet of a marine bird over multiple time scales. Mar. Ecol. Prog. Ser. 281, 207–216 (2004).
Google Scholar
Johnson, K. F. et al. Status of lingcod (Ophiodon elongatus) along the southern U.S. west coast in 2021. 195 p. (2021).
Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North American fishes: Implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).
Google Scholar
Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the great barrier reef following mass coral bleaching. Nature 560, 92–96 (2018).
Google Scholar
Starr, R. M. et al. Variation in responses of fishes across multiple reserves within a network of marine protected areas in temperate waters. PLoS ONE 10, e0118502 (2015).
Google Scholar
Ziegler, S. L. et al. External fishing effort regulates positive effects of no-take marine protected areas. Biol. Cons. 269, 109546 (2022).
Google Scholar
Jarvis, E. T. & Lowe, C. G. The effects of barotrauma on the catch-and-release survival of southern California nearshore and shelf rockfish (Scorpaenidae, Sebastes spp.). Can. J. Fish. Aquat. Sci. 65, 1286–1296 (2008).
Google Scholar
Brooks, R. et al. Nearshore Fishes Abundance and Distribution Data, California Collaborative Fisheries Research Program (CCFRP). (2022).
García-Reyes, M. & Sydeman, W. J. California multivariate ocean climate indicator (MOCI) and marine ecosystem dynamics. Ecol. Ind. 72, 521–529 (2017).
Google Scholar
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021).
Oksanen, J. et al. vegan: Community Ecology Package. (2020).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2021).
Source: Ecology - nature.com