in

Marine protected areas, marine heatwaves, and the resilience of nearshore fish communities

[adace-ad id="91168"]
  • Lauchlan, S. S. & Nagelkerken, I. Species range shifts along multistressor mosaics in estuarine environments under future climate. Fish Fish. 21, 32–46 (2020).

    Article 

    Google Scholar 

  • Gao, G., Zhao, X., Jiang, M. & Gao, L. Impacts of marine heatwaves on algal structure and carbon sequestration in conjunction with ocean warming and acidification. Front. Mar. Sci. 8, 758651 (2021).

    Article 

    Google Scholar 

  • Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proc. Natl. Acad. Sci. 112, E4065–E4074 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Lonhart, S. I., Jeppesen, R., Beas-Luna, R., Crooks, J. A. & Lorda, J. Shifts in the distribution and abundance of coastal marine species along the eastern Pacific Ocean during marine heatwaves from 2013 to 2018. Mar. Biodivers. Rec. 12, 13 (2019).

    Article 

    Google Scholar 

  • Morley, J. W. et al. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13, e0196127 (2018).

    Article 

    Google Scholar 

  • Vergés, A. et al. The tropicalization of temperate marine ecosystems: Climate-mediated changes in herbivory and community phase shifts. Proc. R. Soc. B 281, 20140846 (2014).

    Article 

    Google Scholar 

  • Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cheung, W. W. L. et al. Marine high temperature extremes amplify the impacts of climate change on fish and fisheries. Sci. Adv. https://doi.org/10.1126/sciadv.abh0895 (2021).

    Article 

    Google Scholar 

  • Ling, S. D., Johnson, C. R., Frusher, S. D. & Ridgway, K. R. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. 106, 22341–22345 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Pessarrodona, A. et al. Tropicalization unlocks novel trophic pathways and enhances secondary productivity in temperate reefs. Funct. Ecol. 36, 659–673 (2022).

    Article 

    Google Scholar 

  • Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article 
    ADS 

    Google Scholar 

  • Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).

    Article 
    ADS 

    Google Scholar 

  • Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).

    Article 
    ADS 

    Google Scholar 

  • Cheung, W. W. L. & Frölicher, T. L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 10, 6678 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Garrabou, J. et al. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Glob. Change Biol. 28, 5708–5725 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82 (2013).

    Article 
    ADS 

    Google Scholar 

  • Cure, K. et al. Distributional responses to marine heat waves: insights from length frequencies across the geographic range of the endemic reef fish Choerodon rubescens. Mar. Biol. 165, 1 (2018).

    Article 

    Google Scholar 

  • Jacox, M. G., Tommasi, D., Alexander, M. A., Hervieux, G. & Stock, C. A. Predicting the evolution of the 2014–2016 California current system marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00497 (2019).

    Article 

    Google Scholar 

  • Gentemann, C. L., Fewings, M. R. & García-Reyes, M. Satellite sea surface temperatures along the West Coast of the United States during the 2014–2016 northeast Pacific marine heat wave. Geophys. Res. Lett. 44, 312–319 (2017).

    Article 
    ADS 

    Google Scholar 

  • Cavanaugh, K. C., Reed, D. C., Bell, T. W., Castorani, M. C. N. & Beas-Luna, R. Spatial variability in the resistance and resilience of giant kelp in southern and baja California to a multiyear heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00413 (2019).

    Article 

    Google Scholar 

  • Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future. Oceanography 29, 273–285 (2016).

    Article 

    Google Scholar 

  • Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 10, 19359 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rykaczewski, R. R. & Checkley, D. M. Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. 105, 1965–1970 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Thompson, A. R. et al. Putting the Pacific marine heatwave into perspective: The response of larval fish off southern California to unprecedented warming in 2014–2016 relative to the previous 65 years. Glob. Change Biol. 28, 1766–1785 (2022).

    Article 
    CAS 

    Google Scholar 

  • Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bates, A. E. et al. Resilience and signatures of tropicalization in protected reef fish communities. Nat. Clim. Change 4, 62–67 (2014).

    Article 
    ADS 

    Google Scholar 

  • Behrens, M. & Lafferty, K. Effects of marine reserves and urchin disease on southern Californian rocky reef communities. Mar. Ecol. Prog. Ser. 279, 129–139 (2004).

    Article 
    ADS 

    Google Scholar 

  • Bernhardt, J. R. & Leslie, H. M. Resilience to climate change in coastal marine ecosystems. Ann. Rev. Mar. Sci. 5, 371–392 (2013).

    Article 

    Google Scholar 

  • Caselle, J. E., Davis, K. & Marks, L. M. Marine management affects the invasion success of a non-native species in a temperate reef system in California, USA. Ecol. Lett. 21, 43–53 (2018).

    Article 

    Google Scholar 

  • Micheli, F. et al. Evidence that marine reserves enhance resilience to climatic impacts. PLoS ONE 7, e40832 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Olds, A. D. et al. Marine reserves help coastal ecosystems cope with extreme weather. Glob. Change Biol. 20, 3050–3058 (2014).

    Article 
    ADS 

    Google Scholar 

  • Freedman, R. M., Brown, J. A., Caldow, C. & Caselle, J. E. Marine protected areas do not prevent marine heatwave-induced fish community structure changes in a temperate transition zone. Sci. Rep. 10, 21081 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bates, A. E. et al. Climate resilience in marine protected areas and the ‘Protection Paradox’. Biol. Cons. 236, 305–314 (2019).

    Article 

    Google Scholar 

  • Kirlin, J. et al. California’s Marine Life Protection Act Initiative: Supporting implementation of legislation establishing a statewide network of marine protected areas. Ocean Coast. Manag. 74, 3–13 (2013).

    Article 

    Google Scholar 

  • Saarman, E. T. et al. An ecological framework for informing permitting decisions on scientific activities in protected areas. PLoS ONE 13, e0199126 (2018).

    Article 

    Google Scholar 

  • Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 14102 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hamilton, S. L., Caselle, J. E., Malone, D. P. & Carr, M. H. Incorporating biogeography into evaluations of the Channel Islands marine reserve network. PNAS 107, 18272–18277 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wendt, D. E. & Starr, R. M. Collaborative research: An effective way to collect data for stock assessments and evaluate marine protected areas in California. Mar. Coast. Fish. 1, 315–324 (2009).

    Article 

    Google Scholar 

  • Côté, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).

    Article 

    Google Scholar 

  • Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).

    Article 

    Google Scholar 

  • Li, L. et al. Subregional differences in groundfish distributional responses to anomalous ocean bottom temperatures in the northeast Pacific. Glob. Change Biol. 25, 2560–2575 (2019).

    Article 
    ADS 

    Google Scholar 

  • Dawson, M. N. Phylogeography in coastal marine animals: A solution from California?. J. Biogeogr. 28, 723–736 (2001).

    Article 

    Google Scholar 

  • Horn, M. H., Allen, L. G. & Lea, R. N. Biogeography. In The Ecology of Marine Fishes: California and Adjacent Waters (ed. Allen, L.) 3–25 (University of California Press, 2006). https://doi.org/10.1525/california/9780520246539.003.0001.

    Chapter 

    Google Scholar 

  • Horn, M. H. & Allen, L. G. A distributional analysis of California coastal marine fishes. J. Biogeogr. 5, 23–42 (1978).

    Article 

    Google Scholar 

  • Garrabou, J. et al. Mass mortality in Northwestern Mediterranean rocky benthic communities: Effects of the 2003 heat wave. Glob. Change Biol. 15, 1090–1103 (2009).

    Article 
    ADS 

    Google Scholar 

  • Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B 280, 20122829 (2013).

    Article 

    Google Scholar 

  • O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).

    Article 

    Google Scholar 

  • California Department of Fish and Wildlife. California Sheephead, Bodianus (formerly Semicossyphus) pulcher, Enhanced Status Report. (2021).

  • Pinsky, M. L., Selden, R. L. & Kitchel, Z. J. Climate-driven shifts in marine species ranges: Scaling from organisms to communities. Ann. Rev. Mar. Sci. 12, 153–179 (2020).

    Article 

    Google Scholar 

  • Francour, P., Mangialajo, L. & Pastor, J. Mediterranean marine protected areas and non-indigenous fish spreading. In Fish Invasions of the Mediterranean Sea: Change and Renewal (eds Golani, D. & Appelbaum-Golani, B.) 127–144 (Pensoft Publisher, 2010).

    Google Scholar 

  • Couce, E., Ridgwell, A. & Hendy, E. J. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Glob. Change Biol. 19, 3592–3606 (2013).

    Article 
    ADS 

    Google Scholar 

  • Bennett, S., Wernberg, T., Harvey, E. S., Santana-Garcon, J. & Saunders, B. J. Tropical herbivores provide resilience to a climate-mediated phase shift on temperate reefs. Ecol. Lett. 18, 714–723 (2015).

    Article 

    Google Scholar 

  • Trainer, V. L. et al. Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes. Harmful Algae 91, 101591 (2020).

    Article 

    Google Scholar 

  • Gliwicz, Z. M., Babkiewicz, E., Kumar, R., Kunjiappan, S. & Leniowski, K. Warming increases the number of apparent prey in reaction field volume of zooplanktivorous fish. Limnol. Oceanogr. 63, S30–S43 (2018).

    Article 
    ADS 

    Google Scholar 

  • Nielsen, J. M. et al. Responses of ichthyoplankton assemblages to the recent marine heatwave and previous climate fluctuations in several Northeast Pacific marine ecosystems. Glob. Change Biol. 27, 506–520 (2021).

    Article 
    ADS 

    Google Scholar 

  • du Pontavice, H., Gascuel, D., Reygondeau, G., Stock, C. & Cheung, W. W. L. Climate-induced decrease in biomass flow in marine food webs may severely affect predators and ecosystem production. Glob. Change Biol. 27, 2608–2622 (2021).

    Article 
    ADS 

    Google Scholar 

  • Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Change Biol. 27, 1859–1878 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Oken, K. L., Essington, T. E. & Fu, C. Variability and stability in predation landscapes: A cross-ecosystem comparison on the potential for predator control in temperate marine ecosystems. Fish Fish. 19, 489–501 (2018).

    Article 

    Google Scholar 

  • Baum, J. K. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009).

    Article 

    Google Scholar 

  • Jacox, M. G. et al. Impacts of the 2015–2016 El Niño on the California current system: Early assessment and comparison to past events. Geophys. Res. Lett. 43, 7072–7080 (2016).

    Article 
    ADS 

    Google Scholar 

  • Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00212 (2019).

    Article 

    Google Scholar 

  • Field, J. C. et al. Spatiotemporal patterns of variability in the abundance and distribution of winter-spawned pelagic juvenile rockfish in the California Current. PLoS ONE 16, e0251638 (2021).

    Article 
    CAS 

    Google Scholar 

  • Schroeder, I. D. et al. Source water variability as a driver of rockfish recruitment in the California current ecosystem: Implications for climate change and fisheries management. Can. J. Fish. Aquat. Sci. 76, 950–960 (2019).

    Article 
    CAS 

    Google Scholar 

  • Echeverria, T. W. Thirty-four species of California rockfishes: Maturity and seasonality of reproduction. Fish. Bull. 85, 229–250 (1987).

    Google Scholar 

  • Miller, A. & Sydeman, W. Rockfish response to low-frequency ocean climate change as revealed by the diet of a marine bird over multiple time scales. Mar. Ecol. Prog. Ser. 281, 207–216 (2004).

    Article 
    ADS 

    Google Scholar 

  • Johnson, K. F. et al. Status of lingcod (Ophiodon elongatus) along the southern U.S. west coast in 2021. 195 p. (2021).

  • Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North American fishes: Implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).

    Article 

    Google Scholar 

  • Stuart-Smith, R. D., Brown, C. J., Ceccarelli, D. M. & Edgar, G. J. Ecosystem restructuring along the great barrier reef following mass coral bleaching. Nature 560, 92–96 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Starr, R. M. et al. Variation in responses of fishes across multiple reserves within a network of marine protected areas in temperate waters. PLoS ONE 10, e0118502 (2015).

    Article 

    Google Scholar 

  • Ziegler, S. L. et al. External fishing effort regulates positive effects of no-take marine protected areas. Biol. Cons. 269, 109546 (2022).

    Article 

    Google Scholar 

  • Jarvis, E. T. & Lowe, C. G. The effects of barotrauma on the catch-and-release survival of southern California nearshore and shelf rockfish (Scorpaenidae, Sebastes spp.). Can. J. Fish. Aquat. Sci. 65, 1286–1296 (2008).

    Article 

    Google Scholar 

  • Brooks, R. et al. Nearshore Fishes Abundance and Distribution Data, California Collaborative Fisheries Research Program (CCFRP). (2022).

  • García-Reyes, M. & Sydeman, W. J. California multivariate ocean climate indicator (MOCI) and marine ecosystem dynamics. Ecol. Ind. 72, 521–529 (2017).

    Article 

    Google Scholar 

  • R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021).

  • Oksanen, J. et al. vegan: Community Ecology Package. (2020).

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. (2021).


  • Source: Ecology - nature.com

    Sensing with purpose

    Evaluating sea cucumbers as extractive species for benthic bioremediation in mussel farms