Asada, M. et al. Close relationship of Plasmodium sequences detected from South American pampas deer (Ozotoceros bezoarticus) to Plasmodium spp. in North American white-tailed deer. Int. J. Parasitol. 7, 44–47. https://doi.org/10.1016/j.ijppaw.2018.01.001 (2018).
Google Scholar
Boundenga, L. et al. Haemosporidian parasites of antelopes and other vertebrates from Gabon, Central Africa. PLoS ONE 11, e0148958. https://doi.org/10.1371/journal.pone.0148958 (2016).
Google Scholar
Martinsen, E. S., Perkins, S. L. & Schall, J. J. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): Evolution of life-history traits and host switches. Mol. Phylogen. Evol. 47, 261–273. https://doi.org/10.1016/j.ympev.2007.11.012 (2008).
Google Scholar
Templeton, T. J. et al. Ungulate malaria parasites. Sci. Rep. 6, 23230. https://doi.org/10.1038/srep23230 (2016).
Google Scholar
Templeton, T. J., Martinsen, E., Kaewthamasorn, M. & Kaneko, O. The rediscovery of malaria parasites of ungulates. Parasitology 143, 1501–1508. https://doi.org/10.1017/s0031182016001141 (2016).
Google Scholar
Bruce, D., Harvey, D., Hamerton, A. E. & Bruce, L. Plasmodium cephalophi, sp. nov. Proc. R. Soc. B. 87, 45–47 (1913).
Google Scholar
Sheather, A. L. A malarial parasite in the blood of a buffalo. J. Comp. Pathol. 32, 223–229 (1919).
Google Scholar
Kandel, R. C. et al. First report of malaria parasites in water buffalo in Nepal. Vet. Parasitol. Reg. Stud. Rep. 18, 100348. https://doi.org/10.1016/j.vprsr.2019.100348 (2019).
Google Scholar
de Mello, F. & Paes, S. Sur une plasmodiae du sang des chèvres. C. R. Séanc. Soc. Biol 88, 829–830 (1923).
Kaewthamasorn, M. et al. Genetic homogeneity of goat malaria parasites in Asia and Africa suggests their expansion with domestic goat host. Sci. Rep. 8, 5827. https://doi.org/10.1038/s41598-018-24048-0 (2018).
Google Scholar
Garnham, P. C. & Edeson, J. F. Two new malaria parasites of the Malayan mousedeer. Riv. Malariol. 41, 1–8 (1962).
Google Scholar
Garnham, P. C. & Kuttler, K. L. A malaria parasite of the white-tailed deer (Odocoileus virginianus) and its relation with known species of Plasmodium in other ungulates. Proc. R. Soc. Lond. B 206, 395–402. https://doi.org/10.1098/rspb.1980.0003 (1980).
Google Scholar
Martinsen, E. et al. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus). Sci. Adv. 2, e1501486. https://doi.org/10.1126/sciadv.1501486 (2016).
Google Scholar
Rattanarithikul, R. et al. Illustrated keys to the mosquitoes of Thailand. IV. Anopheles. Southeast Asian. Trop. Med. Public Health 37, 1–128 (2006).
Walter Reed Biosystematics Unit. Systematic catalogue of Culicidae. http://mosquitocatalog.org (2021).
Manguin, S., Garros, C., Dusfour, I., Harbach, R. E. & Coosemans, M. Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenus Cellia in Southeast Asia: An updated review. Infect. Genet. Evol. 8, 489–503. https://doi.org/10.1016/j.meegid.2007.11.004 (2008).
Google Scholar
Brosseau, L. et al. A multiplex PCR assay for the identification of five species of the Anopheles barbirostris complex in Thailand. Parasit. Vectors 12, 223. https://doi.org/10.1186/s13071-019-3494-8 (2019).
Google Scholar
Paredes-Esquivel, C., Donnelly, M. J., Harbach, R. E. & Townson, H. A molecular phylogeny of mosquitoes in the Anopheles barbirostris Subgroup reveals cryptic species: implications for identification of disease vectors. Mol. Phylogen. Evol. 50, 141–151. https://doi.org/10.1016/j.ympev.2008.10.011 (2009).
Google Scholar
Taai, K. & Harbach, R. E. Systematics of the Anopheles barbirostris species complex (Diptera: Culicidae: Anophelinae) in Thailand. Zool. J. Linn. Soc. 174, 244–264. https://doi.org/10.1111/zoj.12236 (2015).
Google Scholar
Garros, C., Van Bortel, W., Trung, H. D., Coosemans, M. & Manguin, S. Review of the Minimus Complex of Anopheles, main malaria vector in Southeast Asia: From taxonomic issues to vector control strategies. Trop. Med. Int. Health 11, 102–114. https://doi.org/10.1111/j.1365-3156.2005.01536.x (2006).
Google Scholar
Dahan-Moss, Y. et al. Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malar. J. 19, 89. https://doi.org/10.1186/s12936-020-03168-x (2020).
Google Scholar
Van Bortel, W. et al. Confirmation of Anopheles varuna in Vietnam, previously misidentified and mistargeted as the malaria vector Anopheles minimus. Am. J. Trop. Med. Hyg. 65, 729–732. https://doi.org/10.4269/ajtmh.2001.65.729 (2001).
Google Scholar
Wharton, R. H., Eyles, D. E., Warren, M., Moorhouse, D. E. & Sandosham, A. A. Investigations leading to the identification of members of the Anopheles umbrosus group as the probable vectors of mouse deer malaria. Bull. 29, 357–374 (1963).
Google Scholar
Nugraheni, Y. R. et al. Myzorhynchus series of Anopheles mosquitoes as potential vectors of Plasmodium bubalis in Thailand. Sci. Rep. 12, 5747. https://doi.org/10.1038/s41598-022-09686-9 (2022).
Google Scholar
Tu, H. L. C. et al. Development of a novel multiplex PCR assay for the detection and differentiation of Plasmodium caprae from Theileria luwenshuni and Babesia spp. in goats. Acta Trop. 220, 105957. https://doi.org/10.1016/j.actatropica.2021.105957 (2021).
Google Scholar
Cywinska, A., Hunter, F. F. & Hebert, P. D. Identifying Canadian mosquito species through DNA barcodes. Med. Vet. Entomol. 20, 413–424. https://doi.org/10.1111/j.1365-2915.2006.00653.x (2006).
Google Scholar
Hebert, P. D., Cywinska, A., Ball, S. L. & de Waard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).
Google Scholar
Ogola, E. O., Chepkorir, E., Sang, R. & Tchouassi, D. P. A previously unreported potential malaria vector in a dry ecology of Kenya. Parasit. Vectors 12, 80. https://doi.org/10.1186/s13071-019-3332-z (2019).
Google Scholar
Maquart, P. O., Fontenille, D., Rahola, N., Yean, S. & Boyer, S. Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia. Parasite 28, 60. https://doi.org/10.1051/parasite/2021056 (2021).
Google Scholar
Tainchum, K. et al. Diversity of Anopheles species and trophic behavior of putative malaria vectors in two malaria endemic areas of northwestern Thailand. J. Vector. Ecol. 39, 424–436. https://doi.org/10.1111/jvec.12118 (2014).
Google Scholar
Vantaux, A. et al. Anopheles ecology, genetics and malaria transmission in northern Cambodia. Sci. Rep. 11, 6458. https://doi.org/10.1038/s41598-021-85628-1 (2021).
Google Scholar
Chookaew, S. et al. Anopheles species composition in malaria high-risk areas in Ranong Province. Dis. Control J. 46, 483–493. https://doi.org/10.14456/dcj.2020.45 (2020).
Google Scholar
Makanga, B. et al. Ape malaria transmission and potential for ape-to-human transfers in Africa. Proc. Natl. Acad. Sci. USA. 113, 5329–5334. https://doi.org/10.1073/pnas.1603008113 (2016).
Google Scholar
Ariey, F., Gay, F. & Ménard, R. Malaria Control and Elimination Vol. 254 (Springer, 2020).
Williams, J. & Pinto, J. Training Manual on Malaria Entomology (Springer, 2012).
Rigg, C. A., Hurtado, L. A., Calzada, J. E. & Chaves, L. F. Malaria infection rates in Anopheles albimanus (Diptera: Culicidae) at Ipetí-Guna, a village within a region targeted for malaria elimination in Panamá. Infect. Genet. Evol. 69, 216–223. https://doi.org/10.1016/j.meegid.2019.02.003 (2019).
Google Scholar
Torres-Cosme, R. et al. Natural malaria infection in anophelines vectors and their incrimination in local malaria transmission in Darién Panama. PLoS ONE 16, e0250059. https://doi.org/10.1371/journal.pone.0250059 (2021).
Google Scholar
Beebe, N. W. & Saul, A. Discrimination of all members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. Am. J. Trop. Med. Hyg. 53, 478–481. https://doi.org/10.4269/ajtmh.1995.53.478 (1995).
Google Scholar
Perkins, S. L. & Schall, J. J. A molecular phylogeny of malarial parasites recovered from cytochrome b gene sequences. J. Parasitol. 88, 972–978. https://doi.org/10.1645/0022-3395(2002)088[0972:AMPOMP]2.0.CO;2 (2002).
Google Scholar
Snounou, G. et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol. Biochem. Parasitol. 61, 315–320. https://doi.org/10.1016/0166-6851(93)90077-B (1993).
Google Scholar
Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic. Acids. Symp. Ser. 41, 95–98 (1999).
Google Scholar
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).
Google Scholar
Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274. https://doi.org/10.1093/molbev/msu300 (2015).
Google Scholar
Ventim, R. et al. Avian malaria infections in western European mosquitoes. Parasitol. Res. 111, 637–645. https://doi.org/10.1007/s00436-012-2880-3 (2012).
Google Scholar
Source: Ecology - nature.com