in

The Cenomanian/Turonian boundary in light of new developments in terrestrial palynology

  • Benca, J. P., Duijnstee, I. A. & Looy, C. V. Fossilized pollen malformations as indicators of past environmental stress and meiotic disruption: Insights from modern conifers. Paleobiology, 1–34 (2022).

  • Marshall, J. E., Lakin, J., Troth, I. & Wallace-Johnson, S. M. Uv-b radiation was the devonian-carboniferous boundary terrestrial extinction kill mechanism. Sci. Adv. 6, eaba0768 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Looy, C. V., Twitchett, R. J., Dilcher, D. L., Van Konijnenburg-Van Cittert, J. H. & Visscher, H. Life in the end-permian dead zone. Proc. Natl. Acad. Sci. 98, 7879–7883 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Foster, C. & Afonin, S. Abnormal pollen grains: An outcome of deteriorating atmospheric conditions around the permian-triassic boundary. J. Geol. Soc. 162, 653–659 (2005).

    Article 
    ADS 

    Google Scholar 

  • Hochuli, P. A., Schneebeli-Hermann, E., Mangerud, G. & Bucher, H. Evidence for atmospheric pollution across the permian-triassic transition. Geology 45, 1123–1126 (2017).

    Article 
    ADS 

    Google Scholar 

  • Galasso, F., Bucher, H. & Schneebeli-Hermann, E. Mapping monstrosity: Malformed sporomorphs across the smithian/spathian boundary interval and beyond (salt range, pakistan). Global Planet. Change 219, 103975 (2022).

    Article 

    Google Scholar 

  • Van de Schootbrugge, B. et al. Floral changes across the triassic/jurassic boundary linked to flood basalt volcanism. Nat. Geosci. 2, 589–594 (2009).

    Article 
    ADS 

    Google Scholar 

  • Lindström, S. et al. Volcanic mercury and mutagenesis in land plants during the end-triassic mass extinction. Sci. Adv. 5, eaaw4018 (2019).

    Article 
    ADS 

    Google Scholar 

  • Gravendyck, J., Schobben, M., Bachelier, J. B. & Kürschner, W. M. Macroecological patterns of the terrestrial vegetation history during the end-triassic biotic crisis in the central european basin: A palynological study of the bonenburg section (nw-germany) and its supra-regional implications. Global Planet. Change 194, 103286 (2020).

    Article 

    Google Scholar 

  • Vilas-Boas, M., Pereira, Z., Cirilli, S., Duarte, L. V. & Fernandes, P. New data on the palynology of the triassic-jurassic boundary of the silves group, lusitanian basin, portugal. Rev. Palaeobot. Palynol. 290, 104426 (2021).

    Article 

    Google Scholar 

  • Galasso, F., Feist-Burkhardt, S. & Schneebeli-Hermann, E. The palynology of the toarcian oceanic anoxic event at dormettingen, southwest germany, with emphasis on changes in vegetational dynamics. Rev. Palaeobotany Palynol. 304, 104701 (2022).

    Article 

    Google Scholar 

  • Galasso, F., Feist-Burkhardt, S. & Schneebeli-Hermann, E. Do spores herald the toarcian oceanic anoxic event?. Rev. Palaeobot. Palynol. 306, 104748 (2022).

    Article 

    Google Scholar 

  • Hay, W. W. & Floegel, S. New thoughts about the cretaceous climate and oceans. Earth Sci. Rev. 115, 262–272 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Faucher, G., Erba, E., Bottini, C. & Gambacorta, G. Calcareous nannoplankton response to the latest cenomanian oceanic anoxic event 2 perturbation. RIVISTA ITALIANA DI PALEONTOLOGIA E STRATIGRAFIA (2017).

  • Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. The ics international chronostratigraphic chart. Epis. J. Int. Geosci. 36, 199–204 (2013).

    Google Scholar 

  • Caron, M. & Homewood, P. Evolution of early planktic foraminifers. Mar. Micropaleontol. 7, 453–462 (1983).

    Article 
    ADS 

    Google Scholar 

  • Jarvis, I. et al. Microfossil assemblages and the cenomanian-turonian (late cretaceous) oceanic anoxic event. Cretac. Res. 9, 3–103 (1988).

    Article 

    Google Scholar 

  • Huber, B. T., Leckie, R. M., Norris, R. D., Bralower, T. J. & CoBabe, E. Foraminiferal assemblage and stable isotopic change across the cenomanian-turonian boundary in the subtropical north atlantic. J. Foraminiferal Res. 29, 392–417 (1999).

    Google Scholar 

  • Culver, S. J. & Rawson, P. F. Biotic response to global change: The last 145 million years (Cambridge University Press, 2006).

  • Erba, E. Calcareous nannofossils and mesozoic oceanic anoxic events. Mar. Micropaleontol. 52, 85–106 (2004).

    Article 
    ADS 

    Google Scholar 

  • Gebhardt, H., Kuhnt, W. & Holbourn, A. Foraminiferal response to sea level change, organic flux and oxygen deficiency in the cenomanian of the tarfaya basin, southern morocco. Mar. Micropaleontol. 53, 133–157 (2004).

    Article 
    ADS 

    Google Scholar 

  • Hardenbol, J. et al. Mesozoic and cenozoic sequence chronostratigraphic framework of european basins. Soc. Sediment. Geol. (1998).

  • Miller, K. G. et al. The phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Voigt, S., Gale, A. S. & Voigt, T. Sea-level change, carbon cycling and palaeoclimate during the late cenomanian of northwest europe; an integrated palaeoenvironmental analysis. Cretac. Res. 27, 836–858 (2006).

    Article 

    Google Scholar 

  • Haq, B. U. Cretaceous eustasy revisited. Global Planet. Change 113, 44–58 (2014).

    Article 
    ADS 

    Google Scholar 

  • Sames, B. et al. Short-term sea-level changes in a greenhouse world-a view from the cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 393–411 (2016).

    Article 

    Google Scholar 

  • Arthur, M. A., Dean, W. E. & Pratt, L. M. Geochemical and climatic effects of increased marine organic carbon burial at the cenomanian/turonian boundary. Nature 335, 714–717 (1988).

    Article 
    ADS 

    Google Scholar 

  • Tsikos, H. et al. Carbon-isotope stratigraphy recorded by the cenomanian-turonian oceanic anoxic event: Correlation and implications based on three key localities. J. Geol. Soc. 161, 711–719 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C. & Pearce, M. A. Black shale deposition, atmospheric co2 drawdown, and cooling during the cenomanian-turonian oceanic anoxic event. Paleoceanography26 (2011).

  • van Bentum, E. C., Reichart, G.-J. & Damsté, J. S. S. Organic matter provenance, palaeoproductivity and bottom water anoxia during the cenomanian/turonian oceanic anoxic event in the newfoundland basin (northern proto north atlantic ocean). Org. Geochem. 50, 11–18 (2012).

    Article 

    Google Scholar 

  • Owens, J. D., Lyons, T. W. & Lowery, C. M. Quantifying the missing sink for global organic carbon burial during a cretaceous oceanic anoxic event. Earth Planet. Sci. Lett. 499, 83–94 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bralower, T. J. Calcareous nannofossil biostratigraphy and assemblages of the cenomanian-turonian boundary interval: Implications for the origin and timing of oceanic anoxia. Paleoceanography 3, 275–316 (1988).

    Article 
    ADS 

    Google Scholar 

  • Leckie, R. M., Bralower, T. J. & Cashman, R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-cretaceous. Paleoceanography 17, 13–1 (2002).

    Article 

    Google Scholar 

  • Slater, S. M., Bown, P., Twitchett, R. J., Danise, S. & Vajda, V. Global record of “ghost’’ nannofossils reveals plankton resilience to high co2 and warming. Science 376, 853–856 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Forster, A., Schouten, S., Moriya, K., Wilson, P. A. & Sinninghe Damsté, J. S. Tropical warming and intermittent cooling during the cenomanian/turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial atlantic. Paleoceanography22 (2007).

  • Barclay, R. S., McElwain, J. C. & Sageman, B. B. Carbon sequestration activated by a volcanic co2 pulse during ocean anoxic event 2. Nat. Geosci. 3, 205–208 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Damsté, J. S. S., van Bentum, E. C., Reichart, G.-J., Pross, J. & Schouten, S. A co2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-cretaceous oceanic anoxic event 2. Earth Planet. Sci. Lett. 293, 97–103 (2010).

    Article 
    ADS 

    Google Scholar 

  • Heimhofer, U. et al. Vegetation response to exceptional global warmth during oceanic anoxic event 2. Nat. Commun. 9, 1–8 (2018).

    Article 
    CAS 

    Google Scholar 

  • Huber, B. T., MacLeod, K. G., Watkins, D. K. & Coffin, M. F. The rise and fall of the cretaceous hot greenhouse climate. Global Planet. Change 167, 1–23 (2018).

    Article 
    ADS 

    Google Scholar 

  • Robinson, S. A. et al. Southern hemisphere sea-surface temperatures during the cenomanian-turonian: Implications for the termination of oceanic anoxic event 2. Geology 47, 131–134 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Voigt, S., Gale, A. S. & Flögel, S. Midlatitude shelf seas in the cenomanian-turonian greenhouse world: Temperature evolution and north atlantic circulation. Paleoceanography19 (2004).

  • Van Helmond, N. et al. Freshwater discharge controlled deposition of cenomanian-turonian black shales on the nw european epicontinental shelf (wunstorf, north germany). Clim. Past Discuss 10, 3755–3786 (2014).

    ADS 

    Google Scholar 

  • Li, Y.-X., Montanez, I. P., Liu, Z. & Ma, L. Astronomical constraints on global carbon-cycle perturbation during oceanic anoxic event 2 (oae2). Earth Planet. Sci. Lett. 462, 35–46 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • O’Brien, C. L. et al. Cretaceous sea-surface temperature evolution: Constraints from tex86 and planktonic foraminiferal oxygen isotopes. Earth Sci. Rev. 172, 224–247 (2017).

    Article 
    ADS 

    Google Scholar 

  • Jones, C. E. & Jenkyns, H. C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the jurassic and cretaceous. Am. J. Sci. 301, 112–149 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Snow, L. J., Duncan, R. A. & Bralower, T. J. Trace element abundances in the rock canyon anticline, pueblo, colorado, marine sedimentary section and their relationship to caribbean plateau construction and oxygen anoxic event 2. Paleoceanography20 (2005).

  • Kuroda, J. et al. Contemporaneous massive subaerial volcanism and late cretaceous oceanic anoxic event 2. Earth Planet. Sci. Lett. 256, 211–223 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Turgeon, S. C. & Creaser, R. A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454, 323–326 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Floegel, S. et al. Simulating the biogeochemical effects of volcanic co2 degassing on the oxygen-state of the deep ocean during the cenomanian/turonian anoxic event (oae2). Earth Planet. Sci. Lett. 305, 371–384 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Tegner, C. et al. Magmatism and eurekan deformation in the high arctic large igneous province: 40ar-39ar age of kap washington group volcanics, north greenland. Earth Planet. Sci. Lett. 303, 203–214 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Du Vivier, A. D. et al. Marine 187os/188os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during oceanic anoxic event 2. Earth Planet. Sci. Lett. 389, 23–33 (2014).

    Article 
    ADS 

    Google Scholar 

  • Du Vivier, A., Selby, D., Condon, D., Takashima, R. & Nishi, H. Pacific 187os/188os isotope chemistry and u-pb geochronology: Synchroneity of global os isotope change across oae 2. Earth Planet. Sci. Lett. 428, 204–216 (2015).

    Article 
    ADS 

    Google Scholar 

  • Meyers, P. A. Why are the (delta )13corg values in phanerozoic black shales more negative than in modern marine organic matter?. Geochem. Geophys. Geosyst. 15, 3085–3106 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jenkyns, H. C., Dickson, A. J., Ruhl, M. & Van den Boorn, S. H. Basalt-seawater interaction, the plenus cold event, enhanced weathering and geochemical change: Deconstructing oceanic anoxic event 2 (cenomanian-turonian, late cretaceous). Sedimentology 64, 16–43 (2017).

    Article 
    CAS 

    Google Scholar 

  • Scaife, J. et al. Sedimentary mercury enrichments as a marker for submarine large igneous province volcanism? evidence from the mid-cenomanian event and oceanic anoxic event 2 (late cretaceous). Geochem. Geophys. Geosyst. 18, 4253–4275 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schröder-Adams, C. J., Herrle, J. O., Selby, D., Quesnel, A. & Froude, G. Influence of the high arctic igneous province on the cenomanian/turonian boundary interval, sverdrup basin, high canadian arctic. Earth Planet. Sci. Lett. 511, 76–88 (2019).

    Article 
    ADS 

    Google Scholar 

  • Jolet, P., Philip, J., Thomel, G., Lopez, G. & Tronchetti, G. Nouvelles données biostratigraphiques sur la limite cénomanien-turonien. la coupe de cassis (sud-est de la france): Proposition d’un hypostratotype européen. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science325, 703–709 (1997).

  • Bown, P. R. & Young, J. Calcareous nannofossil biostratigraphy (Springer, 1998).

  • Green, T., Renne, P. R. & Keller, C. B. Continental flood basalts drive phanerozoic extinctions. Proc. Natl. Acad. Sci. 119, e2120441119 (2022).

    Article 
    CAS 

    Google Scholar 

  • Percival, L. M. et al. Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of oceanic anoxic event 2 and the end-cretaceous to other mesozoic events. Am. J. Sci. 318, 799–860 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Salazar, L. et al. Diversity patterns of ferns along elevational gradients in andean tropical forests. Plant Ecol. Divers. 8, 13–24 (2015).

    Article 

    Google Scholar 

  • Mehltreter, K., Walker, L. R. & Sharpe, J. M. Fern ecology (Cambridge University Press, 2010).

  • Carvajal-Hernández, C. I., Gómez-Díaz, J. A., Kessler, M. & Krömer, T. Influence of elevation and habitat disturbance on the functional diversity of ferns and lycophytes. Plant Ecol. Divers. 11, 335–347 (2018).

    Article 

    Google Scholar 

  • Kürschner, W. M., Batenburg, S. J. & Mander, L. Aberrant classopollis pollen reveals evidence for unreduced (2 n) pollen in the conifer family cheirolepidiaceae during the triassic-jurassic transition. Proc. Royal Soc. B: Biol. Sci. 280, 20131708 (2013).

    Article 

    Google Scholar 

  • Traverse, A. Paleopalynology Vol. 28 (Springer Science & Business Media, 2007).

  • Tyson, R. V. Palynofacies investigation of callovian (middle jurassic) sediments from dsdp site 534, blake-bahama basin, western central atlantic. Mar. Pet. Geol. 1, 3–13 (1984).

    Article 

    Google Scholar 

  • RV, T. Sedimentary organic matter: Organic facies and palynofacieschapman & hall. London, 615pp (1995).

  • Vakhrameyev, V. Classopollis pollen as an indicator of jurassic and cretaceous climate. Int. Geol. Rev. 24, 1190–1196 (1982).

    Article 

    Google Scholar 

  • Vakhrameev, V. Range and palaeoecology of mesozoic conifers, the cheirolepidiaceae. Paleontol. Zh. 1, 19–34 (1970).

    Google Scholar 

  • WATSON, J. Some lower cretaceous conifers of the cheirolepidiaceae from the usa and england. Palaeontology 20, 715–749 (1977).

    Google Scholar 

  • Fonseca, C., Mendonça Filho, J. G., Lézin, C., De Oliveira, A. D. & Duarte, L. V. Organic matter deposition and paleoenvironmental implications across the cenomanian-turonian boundary of the subalpine basin (se france): Local and global controls. Int. J. Coal Geol. 218, 103364 (2020).

    Article 
    CAS 

    Google Scholar 

  • Benca, J. P., Duijnstee, I. A. & Looy, C. V. Uv-b-induced forest sterility: Implications of ozone shield failure in earth’s largest extinction. Sci. Adv. 4, e1700618 (2018).

    Article 
    ADS 

    Google Scholar 

  • Wilson, L. A study in variation of picea glauca (moench) voss pollen. Grana 4, 380–387 (1963).

    Google Scholar 

  • Lindström, S., McLoughlin, S. & Drinnan, A. N. Intraspecific variation of taeniate bisaccate pollen within permian glossopterid sporangia, from the prince charles mountains, antarctica. Int. J. Plant Sci. 158, 673–684 (1997).

    Article 

    Google Scholar 

  • Leitch, A. & Leitch, I. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol. 194, 629–646 (2012).

    Article 
    CAS 

    Google Scholar 

  • Coffin, M. F. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

    Article 
    ADS 

    Google Scholar 

  • Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McElwain, J. C., Wade-Murphy, J. & Hesselbo, S. P. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into gondwana coals. Nature 435, 479–482 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bond, D. P., Wignall, P. B., Keller, G. & Kerr, A. Large igneous provinces and mass extinctions: An update. Volcan., Impacts, Mass Extinc.: Causes Effects 505, 29–55 (2014).

    Google Scholar 

  • Burgess, S., Bowring, S., Fleming, T. & Elliot, D. High-precision geochronology links the ferrar large igneous province with early-jurassic ocean anoxia and biotic crisis. Earth Planet. Sci. Lett. 415, 90–99 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of siberian traps sills as the trigger of the end-permian mass extinction. Nat. Commun. 8, 1–6 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ernst, R. E. & Youbi, N. How large igneous provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 30–52 (2017).

    Article 

    Google Scholar 

  • Ruhl, M. et al. Reduced plate motion controlled timing of early jurassic karoo-ferrar large igneous province volcanism. Sci. Adv. 8, eabo0866 (2022).

    Article 
    CAS 

    Google Scholar 

  • Dickens, G. R., Paull, C. K. & Wallace, P. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature 385, 426–428 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C.R. Geosci. 335, 113–140 (2003).

    Article 
    ADS 

    Google Scholar 

  • Rampino, M. R., Rodriguez, S., Baransky, E. & Cai, Y. Global nickel anomaly links siberian traps eruptions and the latest permian mass extinction. Sci. Rep. 7, 1–6 (2017).

    Article 
    CAS 

    Google Scholar 

  • Clapham, M. E. & Renne, P. R. Flood basalts and mass extinctions. Annu. Rev. Earth Planet. Sci. 47, 275–303 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McElwain, J. C., Popa, M. E., Hesselbo, S. P., Haworth, M. & Surlyk, F. Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the triassic/jurassic boundary in east greenland. Paleobiology 33, 547–573 (2007).

    Article 

    Google Scholar 

  • Van de Schootbrugge, B. et al. End-triassic calcification crisis and blooms of organic-walled ‘disaster species’. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 126–141 (2007).

    Article 

    Google Scholar 

  • Ruckwied, K., Götz, A. E., Pálfy, J. & Török, Á. Palynology of a terrestrial coal-bearing series across the triassic/jurassic boundary (mecsek mts, hungary). Central Euro. Geol. 51, 1–15 (2008).

    Article 
    CAS 

    Google Scholar 

  • Götz, A., Ruckwied, K., Pálfy, J. & Haas, J. Palynological evidence of synchronous changes within the terrestrial and marine realm at the triassic/jurassic boundary (csővár section, hungary). Rev. Palaeobot. Palynol. 156, 401–409 (2009).

    Article 

    Google Scholar 

  • Hochuli, P. A., Hermann, E., Vigran, J. O., Bucher, H. & Weissert, H. Rapid demise and recovery of plant ecosystems across the end-permian extinction event. Global Planet. Change 74, 144–155 (2010).

    Article 
    ADS 

    Google Scholar 

  • Bonis, N. et al.Palaeoenvironmental changes and vegetation history during the Triassic-Jurassic transition (LPP Contribution Series No. 29, 2010).

  • Bonis, N. R. & Kürschner, W. M. Vegetation history, diversity patterns, and climate change across the triassic/jurassic boundary. Paleobiology 38, 240–264 (2012).

    Article 

    Google Scholar 

  • Visscher, H. et al. Environmental mutagenesis during the end-permian ecological crisis. Proc. Natl. Acad. Sci. 101, 12952–12956 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Study: Carbon-neutral pavements are possible by 2050, but rapid policy and industry action are needed

    Brown bear skin-borne secretions display evidence of individuality and age-sex variation