in

Synchrony and multimodality in the timing of Atlantic salmon smolt migration in two Norwegian fjords

  • 1.

    Otero, J. et al. Basin-scale phenology and effects of climate variability on global timing of initial seaward migration of Atlantic salmon (Salmo salar). Glob. Change Biol. 20, 61–75 (2014).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Thorstad, E. B., Whoriskey, F., Rikardsen, A. H. & Aarestrup, K. Aquatic nomads: The life and migrations of the Atlantic salmon. In Atlantic Salmon Ecology (eds Aas, Ø. et al.) 1–32 (Wiley-Blackwell, 2010) https://doi.org/10.1002/9781444327755.ch1.

    Google Scholar 

  • 3.

    Harvey, A. C., Glover, K. A., Wennevik, V. & Skaala, Ø. Atlantic salmon and sea trout display synchronised smolt migration relative to linked environmental cues. Sci. Rep. 10, 3529 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Jensen, A. J. et al. Timing of smolt migration in sympatric populations of Atlantic salmon (Salmo salar), brown trout (Salmo trutta), and Arctic char (Salvelinus alpinus). Can. J. Fish. Aquat. Sci. 69, 711–723 (2012).

    Article 

    Google Scholar 

  • 5.

    Hansen, L. P. & Jonsson, B. Salmon ranching experiments in the River Imsa: Effect of timing of Atlantic salmon (Salmo salar) smolt migration on survival to adults. Aquaculture 82, 367–373 (1989).

    Article 

    Google Scholar 

  • 6.

    Hvidsten, N. A. et al. Influence of sea temperature and initial marine feeding on survival of Atlantic salmon (Salmo salar) post-smolts from the Rivers Orkla and Hals, Norway. J. Fish Biol. 74, 1532–1548 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Hvidsten, N. A., Heggberget, T. & Jensen, A. J. Sea water temperatures at Atlantic salmon smolt enterance. Nord. J. Freshw. Res. 74, 79–86 (1998).

  • 8.

    Otero, J. et al. Quantifying the ocean, freshwater and human effects on year-to-year variability of one-sea-winter Atlantic salmon angled in multiple Norwegian rivers. PLoS ONE 6, e24005 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Rikardsen, A. H. & Dempson, J. B. Dietary life-support: the food and feeding of Atlantic salmon at sea. In Atlantic Salmon Ecology (eds. Aas, Ø., Klemetsen, A., Einum, S. & Skurdal, J.) 115–143 (Wiley, 2011).

  • 10.

    Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Piou, C. & Prévost, E. Contrasting effects of climate change in continental vs. oceanic environments on population persistence and microevolution of Atlantic salmon. Glob. Change Biol. 19, 711–723 (2013).

    ADS 
    Article 

    Google Scholar 

  • 12.

    McCormick, S. D., Hansen, L. P., Quinn, T. P. & Saunders, R. L. Movement, migration, and smolting of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 55, 77–92 (1998).

    Article 

    Google Scholar 

  • 13.

    Thorstad, E. B. et al. A critical life stage of the Atlantic salmon (Salmo salar): Behaviour and survival during the smolt and initial post-smolt migration. J. Fish Biol. 81, 500–542 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Aldrin, M., Storvik, B., Kristoffersen, A. B. & Jansen, P. A. Space-time modelling of the spread of salmon lice between and within Norwegian marine salmon farms. PLoS ONE 8, e64039 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Jansen, P. A. et al. Sea lice as a density-dependent constraint to salmonid farming. Proc. R. Soc. B Biol. Sci. 279, 2330–2338 (2012).

    Article 

    Google Scholar 

  • 16.

    Kristoffersen, A. B. et al. Large scale modelling of salmon lice (Lepeophtheirus salmonis) infection pressure based on lice monitoring data from Norwegian salmonid farms. Epidemics 9, 31–39 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 17.

    Bøhn, T. et al. Timing is everything: Survival of Atlantic salmon (Salmo salar) postsmolts during events of high salmon lice densities. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13612 (2020).

    Article 

    Google Scholar 

  • 18.

    Berge, Å. I. et al. Development of salinity tolerance in underyearling smolts of Atlantic salmon (Salmo salar) reared under different photoperiods. Can. J. Fish. Aquat. Sci. 52, 243–251 (1995).

    Article 

    Google Scholar 

  • 19.

    Hoar, W. S. 4 The physiology of smolting salmonids. In Fish Physiology Vol. 11 (eds Hoar, W. S. & Randall, D. J.) 275–343 (Academic Press, 1988).

    Google Scholar 

  • 20.

    Saunders, R. L. & Henderson, E. B. Influence of photoperiod on smolt development and growth of Atlantic salmon (Salmo solar). J. Fish. Res. Board Can. 27, 1295–1311 (1970).

    Article 

    Google Scholar 

  • 21.

    Strand, J. E. T., Hazlerigg, D. & Jørgensen, E. H. Photoperiod revisited: Is there a critical day length for triggering a complete parr-smolt transformation in Atlantic salmon (Salmo salar)?. J. Fish Biol. 93, 440–448 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Antonsson, T. & Gudjonsson, S. Variability in timing and characteristics of Atlantic salmon smolt in Icelandic rivers. Trans. Am. Fish. Soc. 131, 643–655 (2002).

    Article 

    Google Scholar 

  • 23.

    Kennedy, R. & Crozier, W. Evidence of changing migratory patterns of wild Atlantic salmon Salmo salar smolts in the River Bush, Northern Ireland, and possible associations with climate change. J. Fish Biol. 76, 1786–1805 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Hvidsten, N. A., Jensen, A. J., Vivås, H. & Bakke, Ø. Downstream migration of Atlantic salmon smolts in relation to water flow, water temperature, moon phase and social interaction. Nord. J. Freshw. Res. 70, 38–48 (1995).

  • 25.

    Urke, H. A., Kristensen, T., Ulvund, J. B. & Alfredsen, J. A. Riverine and fjord migration of wild and hatchery-reared Atlantic salmon smolts. Fish. Manag. Ecol. 20, 544–552 (2013).

    Article 

    Google Scholar 

  • 26.

    Carlsen, K. T., Berg, O. K., Finstad, B. & Heggberget, T. G. Diel periodicity and environmental influence on the smolt migration of Arctic charr, Salvelinus alpinus, Atlantic salmon, Salmo salar, and Brown Trout, Salmo trutta, Northern Norway. Environ. Biol. Fishes 70, 403–413 (2004).

    Article 

    Google Scholar 

  • 27.

    Birnie-Gauvin, K., Larsen, M. H., Thomassen, S. T. & Aarestrup, K. Testing three common stocking methods: Differences in smolt size, migration rate and timing of two strains of stocked Atlantic salmon (Salmo salar). Aquaculture 483, 163–168 (2018).

    Article 

    Google Scholar 

  • 28.

    Nielsen, C., Holdensgaard, G., Petersen, H. C., Bjornsson, BTh. & Madsen, S. S. Genetic differences in physiology, growth hormone levels and migratory behaviour of Atlantic salmon smolts. J. Fish Biol. 59, 28–44 (2001).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Orciari, R. D. & Leonard, G. H. Length characteristics of smolts and timing of downstream migration among three strains of Atlantic salmon in a southern New England stream. N. Am. J. Fish. Manag. 16, 851–860 (1996).

    Article 

    Google Scholar 

  • 30.

    Skaala, Ø. et al. An extensive common-garden study with domesticated and wild Atlantic salmon in the wild reveals impact on smolt production and shifts in fitness traits. Evol. Appl. 12, 1001–1016 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Cooke, S. J. et al. Tracking animals in freshwater with electronic tags: Past, present and future. Anim. Biotelemetry 1, 5 (2013).

    MathSciNet 
    Article 

    Google Scholar 

  • 32.

    Lennox, R. J. et al. Envisioning the future of aquatic animal tracking: Technology, science, and application. Bioscience 67, 884–896 (2017).

    Article 

    Google Scholar 

  • 33.

    Finstad, B., Okland, F., Thorstad, E. B., BjOrn, P. A. & McKinley, R. S. Migration of hatchery-reared Atlantic salmon and wild anadromous brown trout post-smolts in a Norwegian fjord system. J. Fish Biol. 66, 86–96 (2005).

    Article 

    Google Scholar 

  • 34.

    McMichael, G. A. et al. The juvenile salmon acoustic telemetry system: A new tool. Fisheries 35, 9–22 (2010).

    Article 

    Google Scholar 

  • 35.

    Welch, D. W. et al. Freshwater and marine migration and survival of endangered Cultus Lake sockeye salmon (Oncorhynchus nerka) smolts using POST, a large-scale acoustic telemetry array. Can. J. Fish. Aquat. Sci. 66, 736–750 (2009).

    Article 

    Google Scholar 

  • 36.

    Nilsen, F. et al. Vurdering av lakselusindusert villfiskdødelighet per produksjonsområde i 2018. Rapp. Fra Ekspertgruppe Vurder. Av Lusepåvirkning Append 2, 62 (2018).

    Google Scholar 

  • 37.

    Mulcahy, D. M. Surgical implantation of transmitters into fish. ILAR J. 44, 295–306 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Cooke, S. J. & Wagner, G. N. Training, experience, and opinions of researchers who use surgical techniques to implant telemetry devices into fish. Fisheries 29, 10–18 (2004).

    Article 

    Google Scholar 

  • 39.

    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biol. 18, e3000411 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Grün, B. & Leisch, F. FlexMix version 2: Finite mixtures with concomitant variables and varying and constant parameters. J. Stat. Softw. 28, 1–35 (2008).

    Article 

    Google Scholar 

  • 41.

    Leisch, F. FlexMix: A general framework for finite mixture models and latent class regression in R. J. Stat. Softw. 11, 1–18 (2004).

    Article 

    Google Scholar 

  • 42.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).

    Google Scholar 

  • 43.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models using lme4. arXiv:1406.5823Stat (2014).

  • 44.

    Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).

    Article 

    Google Scholar 

  • 45.

    Laake, J. L. RMark: An R Interface for Analysis of Capture-Recapture Data with MARK. 25 http://www.afsc.noaa.gov/Publications/ProcRpt/PR2013-01.pdf (2013).

  • 46.

    White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).

    Article 

    Google Scholar 

  • 47.

    Burnham, K. P. Design and analysis methods for fish survival experiments based on release-recapture. Am. Fish. Soc. Monogr. 5, 1–437 (1987).

    Google Scholar 

  • 48.

    Michel, C. J. et al. Chinook salmon outmigration survival in wet and dry years in California’s Sacramento River. Can. J. Fish. Aquat. Sci. 72, 1749–1759 (2015).

    Article 

    Google Scholar 

  • 49.

    Persson, L., Kagervall, A., Leonardsson, K., Royan, M. & Alanärä, A. The effect of physiological and environmental conditions on smolt migration in Atlantic salmon Salmo salar. Ecol. Freshw. Fish 28, 190–199 (2019).

    Article 

    Google Scholar 

  • 50.

    Whalen, K. G., Parrish, D. L. & McCormick, S. D. Migration timing of Atlantic salmon smolts relative to environmental and physiological factors. Trans. Am. Fish. Soc. 128, 289–301 (1999).

    Article 

    Google Scholar 

  • 51.

    Haraldstad, T., Kroglund, F., Kristensen, T., Jonsson, B. & Haugen, T. O. Diel migration pattern of Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) smolts: An assessment of environmental cues. Ecol. Freshw. Fish 26, 541–551 (2017).

    Article 

    Google Scholar 

  • 52.

    Skilbrei, O. T., Wennevik, V., Dahle, G., Barlaup, B. & Wiers, T. Delayed smolt migration of stocked Atlantic salmon parr. Fish. Manag. Ecol. 17, 493–500 (2010).

    Article 

    Google Scholar 

  • 53.

    Freshwater, C. et al. Individual variation, population-specific behaviours and stochastic processes shape marine migration phenologies. J. Anim. Ecol. 88, 67–78 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).

    Article 

    Google Scholar 

  • 55.

    Urke, H. A., Arnekleiv, J. V., Nilsen, T. O. & Nilssen, K. J. Development of seawater tolerance and subsequent downstream migration in wild and stocked young-of-the-year derived Atlantic salmon Salmo salar smolts. J. Fish Biol. 84, 178–192 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Virtanen, E., Söderholm-Tana, L., Soivio, A., Foreman, L. & Muona, M. Effect of physiological condition and smoltification status at smolt release on subsequent catches of adult salmon. Aquaculture 97, 231–257 (1991).

    Article 

    Google Scholar 

  • 57.

    Björnsson, B. T., Stefansson, S. O. & McCormick, S. D. Environmental endocrinology of salmon smoltification. Gen. Comp. Endocrinol. 170, 290–298 (2011).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 58.

    Stefansson, S. O., Björnsson, B. T., Ebbesson, L. O. E. & McCormick, S. D. Smoltification. In Fish Larval Physiology (eds. Finn, R. N. & Kapoor, B. G.) 639–681 (Science Publishers, 2008).

  • 59.

    McCormick, S. D., Shrimpton, J. M., Nilsen, T. O. & Ebbesson, L. O. Advances in our understanding of the parr-smolt transformation of juvenile salmon: A summary of the 10th International Workshop on Salmon Smoltification. J. Fish Biol. 93, 437–439 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 60.

    Simons, A. Playing smart vs. playing safe: The joint expression of phenotypic plasticity and potential bet hedging across and within thermal environments. J. Evol. Biol. 27, 1047–1056 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Finstad, B. & Jonsson, N. Factors influencing the yield of smolt releases in Norway. Nord. J. Freshw. Res. 75, 37–55 (2001).

  • 62.

    Diserud, O. H., Hindar, K., Karlsson, S., Glover, K. A. & Skaala, Ø. Genetic impact of escaped farmed Atlantic salmon on wild salmon populations—status 2017. NINA Rapp. 1337, 55 (2017).

    Google Scholar 

  • 63.

    Vollset, K. W. et al. Can the river location within a fjord explain the density of Atlantic salmon and sea trout?. Mar. Biol. Res. 10, 268–278 (2014).

    Article 

    Google Scholar 

  • 64.

    Lacroix, G. L., Knox, D. & McCurdy, P. Effects of implanted dummy acoustic transmitters on juvenile Atlantic salmon. Trans. Am. Fish. Soc. 133, 211–220 (2004).

    Article 

    Google Scholar 

  • 65.

    Newton, M. et al. Does size matter? A test of size-specific mortality in Atlantic salmon Salmo salar smolts tagged with acoustic transmitters. J. Fish Biol. 89, 1641–1650 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Hansen, L. P., Holm, M., Hoist, J. C. & Jacobsen, J. A. The ecology of post-smolts of Atlantic salmon. In Salmon at the Edge (ed. Mills, D.) 25–39 (Blackwell Science Ltd., 2003) https://doi.org/10.1002/9780470995495.ch4.

    Google Scholar 

  • 67.

    Gregory, S. D. et al. Atlantic salmon return rate increases with smolt length. ICES J. Mar. Sci. 76, 1702–1712 (2019).

    Article 

    Google Scholar 

  • 68.

    Bjørn, P. A. et al. Metodeutvikling for overvåkning og telling av lakselus på viltlevende laksefisk: Ekstrainnsats i 2010 med midler fra FKD. (2011).

  • 69.

    Riley, W. D. et al. Development of schooling behaviour during the downstream migration of Atlantic salmon Salmo salar smolts in a chalk stream: Development of schooling in Salmo salar smolts. J. Fish Biol. 85, 1042–1059 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Daniels, J., Sutton, S., Webber, D. & Carr, J. Extent of predation bias present in migration survival and timing of Atlantic salmon smolt (Salmo salar) as suggested by a novel acoustic tag. Anim. Biotelemetry 7, 16 (2019).

    Article 

    Google Scholar 

  • 71.

    Halttunen, E. et al. Migration of Atlantic salmon post-smolts in a fjord with high infestation pressure of salmon lice. Mar. Ecol. Prog. Ser. 592, 243–256 (2018).

    ADS 
    Article 

    Google Scholar 

  • 72.

    Harvey, A. C. et al. Inferring Atlantic salmon post-smolt migration patterns using genetic assignment. R. Soc. Open Sci. 6, 190426 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Transforming lives by providing safe drinking water

    Local adaptation to continuous mowing makes the noxious weed Solanum elaeagnifolium a superweed candidate by improving fitness and defense traits