in

Shortfalls and opportunities in terrestrial vertebrate species discovery

  • 1.

    Costello, M. J., May, R. M. & Stork, N. E. Can we name Earth’s species before they go extinct? Science 339, 413–416 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Mora, C., Rollo, A. & Tittensor, D. P. Comment on ‘Can we name Earth’s species before they go extinct?’. Science 341, 237 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the Ocean? PLoS Biol. 9, e1001127 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    May, R. & Beverton, R. J. H. How many species? Phil. Trans. R. Soc. B 330, 293–304 (1990).

    Article 

    Google Scholar 

  • 5.

    Scheffers, B. R., Joppa, L. N., Pimm, S. L. & Laurance, W. F. What we know and don’t know about Earth’s missing biodiversity. Trends Ecol. Evol. 27, 501–510 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Raven, P. H. & Wilson, E. O. A fifty-year plan for biodiversity surveys. Science 258, 1099–1100 (1992).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Whittaker, R. J. et al. Conservation biogeography: assessment and prospect. Divers. Distrib. 11, 3–23 (2005).

    Article 

    Google Scholar 

  • 8.

    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Article 

    Google Scholar 

  • 9.

    Guide to the Global Taxonomy Initiative (Secretariat of the Convention on Biological Diversity, 2010).

  • 10.

    Costello, M. J., May, R. M. & Stork, N. E. Response to comments on ‘Can we name Earth’s species before they go extinct?’. Science 341, 237 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Bebber, D. P., Marriott, F. H. C., Gaston, K. J., Harris, S. A. & Scotland, R. W. Predicting unknown species numbers using discovery curves. Proc. R. Soc. B 274, 1651–1658 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Edie, S. M., Smits, P. D. & Jablonski, D. Probabilistic models of species discovery and biodiversity comparisons. Proc. Natl Acad. Sci. USA 114, 3666–3671 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Guenard, B., Weiser, M. D. & Dunn, R. R. Global models of ant diversity suggest regions where new discoveries are most likely are under disproportionate deforestation threat. Proc. Natl Acad. Sci. USA 109, 7368–7373 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Blackburn, T. M. & Gaston, K. J. What determines the probability of discovering a species – a study of South-American Oscine Passerine birds. J. Biogeogr. 22, 7–14 (1995).

    Article 

    Google Scholar 

  • 15.

    Costello, M. J., Lane, M., Wilson, S. & Houlding, B. Factors influencing when species are first named and estimating global species richness. Glob. Ecol. Conserv. 4, 243–254 (2015).

    Article 

    Google Scholar 

  • 16.

    Collen, B., Purvis, A. & Gittleman, J. L. Biological correlates of description date in carnivores and primates. Glob. Ecol. Biogeogr. 13, 459–467 (2004).

    Article 

    Google Scholar 

  • 17.

    Diniz-Filho, J. A. F. et al. Macroecological correlates and spatial patterns of anuran description dates in the Brazilian Cerrado. Glob. Ecol. Biogeogr. 14, 469–477 (2005).

    Article 

    Google Scholar 

  • 18.

    Costello, M. J., Houlding, B. & Joppa, L. N. Further evidence of more taxonomists discovering new species, and that most species have been named: response to Bebber et al. (2014). New Phytol. 202, 739–740 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 19.

    Meiri, S. Small, rare and trendy: traits and biogeography of lizards described in the 21st century. J. Zool. 299, 251–261 (2016).

    Article 

    Google Scholar 

  • 20.

    Klein, J. P. & Moeschberger, M. L. Survival Analysis: Techniques for Censored and Truncated Data.(Springer, 2003).

  • 21.

    Essl, F., Rabitsch, W., Dullinger, S., Moser, D. & Milasowszky, N. How well do we know species richness in a well-known continent? Temporal patterns of endemic and widespread species descriptions in the European fauna. Glob. Ecol. Biogeogr. 22, 29–39 (2013).

    Article 

    Google Scholar 

  • 22.

    Colli, G. R. et al. In the depths of obscurity: knowledge gaps and extinction risk of Brazilian worm lizards (Squamata, Amphisbaenidae). Biol. Conserv. 204, 51–62 (2016).

    Article 

    Google Scholar 

  • 23.

    Burgin, C. J., Colella, J. P., Kahn, P. L. & Upham, N. S. How many species of mammals are there? J. Mammal. 99, 1–14 (2018).

    Article 

    Google Scholar 

  • 24.

    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).

    Article 

    Google Scholar 

  • 26.

    Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Joppa, L. N., Roberts, D. L. & Pimm, S. L. How many species of flowering plants are there? Proc. R. Soc. B 278, 554–559 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Giam, X. et al. Reservoirs of richness: least disturbed tropical forests are centres of undescribed species diversity. Proc. R. Soc. B 279, 67–76 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 29.

    Jetz, W. & Fine, P. V. A. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol. 10, e1001292 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Gouveia, S. F., Villalobos, F., Dobrovolski, R., Beltrão-Mendes, R. & Ferrari, S. F. Forest structure drives global diversity of primates. J. Anim. Ecol. 83, 1523–1530 (2014).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Oliveira, B. F. & Scheffers, B. R. Vertical stratification influences global patterns of biodiversity. Ecography 42, 249–249 (2019).

    Article 

    Google Scholar 

  • 32.

    Oliveira, U. et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers. Distrib. 22, 1232–1244 (2016).

  • 33.

    Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Garnett, S. T. & Christidis, L. Taxonomy anarchy hampers conservation. Nature 546, 25–27 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Isaac, N. J. B., Mallet, J. & Mace, G. M. Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol. Evol. 19, 464–469 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Bremer, K., Bremer, B., Karis, P. & Källersjö, M. Time for change in taxonomy. Nature 343, 202 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Raposo, M. A. et al. What really hampers taxonomy and conservation? A riposte to Garnett and Christidis (2017). Zootaxa 4317, 179–184 (2017).

    Article 

    Google Scholar 

  • 38.

    Wake, D. B. Persistent plethodontid themes: species, phylogenies, and biogeography. Herpetologica 73, 242–251 (2017).

    Article 

    Google Scholar 

  • 39.

    Tedesco, P. A. et al. Estimating how many undescribed species have gone extinct. Conserv. Biol. 28, 1360–1370 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 41.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Jetz, W. & Pyron, R. A. The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nat. Ecol. Evol. 2, 850–858 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 43.

    Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    González-del-Pliego, P. et al. Phylogenetic and trait-based prediction of extinction risk for data-deficient amphibians. Curr. Biol. 29, 1557–1563.e3 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 45.

    Moura, M. R. et al. Geographical and socioeconomic determinants of species discovery trends in a biodiversity hotspot. Biol. Conserv. 220, 237–244 (2018).

    Article 

    Google Scholar 

  • 46.

    Gaston, K. J., Blackburn, T. M. & Loder, N. Which species are described first? The case of North-American butterflies. Biodivers. Conserv. 4, 119–127 (1995).

    Article 

    Google Scholar 

  • 47.

    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Feldman, A., Sabath, N., Pyron, R. A., Mayrose, I. & Meiri, S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Glob. Ecol. Biogeogr. 25, 187–197 (2016).

    Article 

    Google Scholar 

  • 49.

    Hallmann, K. & Griebeler, E. M. An exploration of differences in the scaling of life history traits with body mass within reptiles and between amniotes. Ecol. Evol. 8, 5480–5494 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Slavenko, A., Itescu, Y., Ihlow, F. & Meiri, S. Home is where the shell is: predicting turtle home range sizes. J. Anim. Ecol. 85, 106–114 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 51.

    Regis, K. W. & Meik, J. M. Allometry of sexual size dimorphism in turtles: a comparison of mass and length data. PeerJ 5, e2914 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C. H. & Meiri, S. Is the island rule general? Turtles disagree. Glob. Ecol. Biogeogr. 23, 689–700 (2014).

    Article 

    Google Scholar 

  • 53.

    Faurby, S. & Svenning, J.-C. Resurrection of the island rule: human-driven extinctions have obscured a basic evolutionary pattern. Am. Nat. 187, 812–820 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 54.

    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).

    Article 

    Google Scholar 

  • 55.

    Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W. & Pyron, R. A. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204A, 23–31 (2016).

  • 56.

    Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).

    Article 

    Google Scholar 

  • 57.

    Gaston, K. J., Blackburn, T. M. & Lawton, J. H. Interspecific abundance–range size relationships: an appraisal of mechanisms. J. Anim. Ecol. 66, 579–601 (1997).

    Article 

    Google Scholar 

  • 58.

    Borregaard, M. K. & Rahbek, C. Causality of the relationship between geographic distribution and species abundance. Q. Rev. Biol. 85, 3–25 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 59.

    IUCN Red List of Threatened Species. Version 2018 (IUCN, 2018).

  • 60.

    Freitag, S., Hobson, C., Biggs, H. C. & Jaarsveld, A. S. Testing for potential survey bias: the effect of roads, urban areas and nature reserves on a southern African mammal data set. Anim. Conserv. 1, 119–127 (1998).

    Article 

    Google Scholar 

  • 61.

    Kier, G. & Barthlott, W. Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodivers. Conserv. 10, 1513–1529 (2001).

    Article 

    Google Scholar 

  • 62.

    Vilela, B. & Villalobos, F. letsR: a new R package for data handling and analysis in macroecology. Methods Ecol. Evol. 6, 1229–1234 (2015).

    Article 

    Google Scholar 

  • 63.

    Papavero, N. Essays on the History of Neotropical Dipterology: With Special Reference to Collectors: 1750–1905: Vol. I (Museu de Zoologia da Universidade de São Paulo, 1971).

  • 64.

    Baselga, A., Lobo, J. M., Hortal, J., Jiménez-Valverde, A. & Gómez, J. F. Assessing alpha and beta taxonomy in eupelmid wasps: determinants of the probability of describing good species and synonyms. J. Zool. Syst. Evol. Res. 48, 40–49 (2010).

    Article 

    Google Scholar 

  • 65.

    Yang, W., Ma, K. & Kreft, H. Environmental and socio-economic factors shaping the geography of floristic collections in China. Glob. Ecol. Biogeogr. 23, 1284–1292 (2014).

    Article 

    Google Scholar 

  • 66.

    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    R Core Team R: A Language and Environment for Statistical Computing Version 3.5.3 (R Foundation for Statistical Computing, 2019).

  • 68.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling https://cran.r-project.org/package=raster (2015).

  • 69.

    Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 5, 180040 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Article 

    Google Scholar 

  • 71.

    Joppa, L. N., Roberts, D. L. & Pimm, S. L. The population ecology and social behaviour of taxonomists. Trends Ecol. Evol. 26, 551–553 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Wickham, H. stringr: Simple, Consistent Wrappers for Common String Operations. R package version 1.3.1 http://stringr.tidyverse.org (2018).

  • 73.

    Mahto, A. splitstackshape: Stack and Reshape Datasets After Splitting Concatenated Values. R package version 1.4.6 http://github.com/mrdwab/splitstackshape (2018).

  • 74.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. BioScience 67, 534–545 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. Applied Linear Statistical Models (McGraw-Hill, 2004).

    Google Scholar 

  • 76.

    Naimi, B. usdm: Uncertainty Analysis for Species Distribution Models https://cran.r-project.org/package=usdm (2017).

  • 77.

    von Linné, C. Systema Naturae https://doi.org/10.5962/bhl.title.542 (Impensis Direct Laurentii Salvii, 1758).

  • 78.

    Harrell, F. E. Regression Modeling Strategies (Springer, 2001).

  • 79.

    George, B., Seals, S. & Aban, I. Survival analysis and regression models. J. Nucl. Cardiol. 21, 686–694 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Jackson, C. flexsurv: a platform for parametric survival modeling in R. J. Stat. Softw. 70, 1–33 (2016).

    Article 

    Google Scholar 

  • 81.

    Burnham, K. P. & Anderson, D. A. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

  • 82.

    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

    PubMed 
    Article 

    Google Scholar 

  • 83.

    Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.6 https://cran.r-project.org/package=MuMIn (2019).

  • 84.

    Alexander Pyron, R. & Wiens, J. J. A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Mol. Phylogenet. Evol. 61, 543–583 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 85.

    Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 86.

    Fisher, D. O. & Blomberg, S. P. Correlates of rediscovery and the detectability of extinction in mammals. Proc. R. Soc. B 278, 1090–1097 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 87.

    Jetz, W., Sekercioglu, C. H. & Böhning-Gaese, K. The worldwide variation in avian clutch size across species and space. PLoS Biol. 6, e303 (2008).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Jetz, W. & Rubenstein, D. R. Environmental uncertainty and the global biogeography of cooperative breeding in birds. Curr. Biol. 21, 72–78 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 89.

    Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 90.

    Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame’. R package version 1.12.4 https://cran.r-project.org/package=data.table (2019).

  • 91.

    Gaston, K. J., Chown, S. L. & Evans, K. L. Ecogeographical rules: elements of a synthesis. J. Biogeogr. 35, 483–500 (2008).

    Article 

    Google Scholar 

  • 92.

    Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 93.

    Database of Global Administrative Areas Version 3.6 (GADM, 2019); http://www.gadm.org


  • Source: Ecology - nature.com

    Transforming lives by providing safe drinking water

    Local adaptation to continuous mowing makes the noxious weed Solanum elaeagnifolium a superweed candidate by improving fitness and defense traits