in

Candidatus Eremiobacterota, a metabolically and phylogenetically diverse terrestrial phylum with acid-tolerant adaptations

  • 1.

    Ji M, Greening C, Vanwonterghem I, Carere CR, Bay SK, Steen JA. Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature. 2017;552:400–3.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Grostern A, Alvarez-Cohen L. RubisCO-based CO2 fixation and C1 metabolism in the actinobacterium Pseudonocardia dioxanivorans CB1190. Environ Microbiol. 2013;15:3040–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Greening C, Biswas A, Carere CR, Jackson CJ, Taylor MC, Stott MB, et al. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016;10:761–77.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Bay S, Ferrari BC, Greening C. Life without water: how do bacteria generate biomass in desert ecosystems? Microbiol Austral. 2018;39:28–32.

    Article 

    Google Scholar 

  • 5.

    Ray A, Zhang E, Terauds A, Ji M, Kong W, Ferrari BC. Soil microbiomes with the genetic capacity for atmospheric chemosynthesis are widespread across the poles and are associated with moisture, carbon and nitrogen limitation. Front Microbiol. 2020;11:1–13.

    Article 

    Google Scholar 

  • 6.

    Greening C, Berney M, Hards K, Cook GM, Conrad R. A soil actinobacterium scavenges atmospheric H2 using two membrane-associated, oxygen-dependent [NiFe] hydrogenases. Proc Natl Acad Sci. 2014;111:4257–61.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Nogales B, Moore ERB, Llobet-Brossa E, Rossello-Mora R, Amann R, Timmis KN. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol. 2001;67:1874–84.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Nessner Kavamura V, Taketani RG, Lançoni MD, Andreote FD, Mendes R, Soares de Melo I. Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome. PLoS ONE. 2013;8:e73606.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Serkebaeva YM, Kim Y, Liesack W, Dedysh SN. Pyrosequencing-based assessment of the bacteria diversity in surface and subsurface peat layers of a northern wetland, with focus on poorly studied phyla and candidate divisions. PLoS ONE. 2013;8:e63994.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Holland-Moritz H, Stuart J, Lewis LR, Miller S, Mack MC, McDaniel SF, et al. Novel bacterial lineages associated with boreal moss species. Environ Microbiol. 2018;20:2625–38.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Ward LM, Cardona T, Holland-Moritz H. Evolutionary implications of anoxygenic phototrophy in the bacterial phylum Candidatus Eremiobacterota (WPS-2). Front Microbiol. 2019;10:1658.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Sheremet A, Jones GM, Jarett J, Bowers RM, Bedard I, Culham C, et al. Ecological and genomic analyses of candidate phylum WPS-2 bacteria in an unvegetated soil. Environ Microbiol. 2020;22:3143–57.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Dewhirst FE, Klein EA, Thompson EC, Blanton JM, Chen T, Milella L, et al. The canine oral microbiome. PLoS ONE. 2012;7:e36067.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Camanocha A, Dewhirst FE. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J Oral Microbiol. 2014;6. https://doi.org/10.3402/jom.v6.25468.

  • 16.

    Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Ji M, van Dorst J, Bissett A, Brown MV, Palmer AS, Snape I, et al. Microbial diversity at Mitchell Peninsula, Eastern Antarctica: a potential biodiversity “hotspot”. Pol Biol. 2015;39:237–49.

    Article 

    Google Scholar 

  • 18.

    Ferrari BC, Bissett A, Snape I, van Dorst J, Palmer AS, Ji M, et al. Geological connectivity drives microbial community structure and connectivity in polar, terrestrial ecosystems. Environ Microbiol. 2016;18:1834–49.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Bissett A, Fitzgerald A, Meintjes T, Mele PM, Reith F, Dennis PG, et al. Introducing BASE: the biomes of Australian soil environments soil microbial diversity database. Gigascience. 2016;5:21.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Siciliano SD, Palmer AS, Winsley T, Lamb E, Bissett A, Brown MV, et al. Polar soil bacterial and fungal biodiversity survey, Ver. 1. Australian Antarctic Data Centre; 2014. https://doi.org/10.4225/15/526F42ADA05B1. Accessed 11 Feb 2021.

  • 21.

    Lane D. Nucleic acid techniques in bacterial systematics. In: Stackebrandt E, Goodfellow M, editors. Chichester NY: John Wiley and Sons; 1991. p. 115–75.

  • 22.

    Siciliano SD, Palmer A, Winsley T, Lamb E, Bissett A, Brown M, et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Biochem. 2014;78:10–20.

    CAS 
    Article 

    Google Scholar 

  • 23.

    Archer E. R package. 2016.

  • 24.

    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014. https://doi.org/10.1093/bioinformatics/btu170.

  • 25.

    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Berkeley, CA, United States: Lawrence Berkeley National Laboratory; 2014.

  • 27.

    Imelfort M, Parks D, Woodcroft BJ, Dennis P, Hugenholtz P, Tyson GW. GroopM: an automated tool for the recovery of population genomes from related metagenomes. PeerJ. 2014;2:e603.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Wu YW, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.

    CAS 

    Google Scholar 

  • 34.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P, Kämpfer P, et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat Microbiol. 2020;5:987–94.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    CAS 
    Article 

    Google Scholar 

  • 37.

    Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S. Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev. 2007;71:576–99.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Tabita FR, Hanson TE, Satagopan S, Witte BH, Kreel NE. Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. Philos Trans R Soc Lond B Biol Sci. 2008;363:2629–40.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Sondergaard D, Pedersen CN, Greening C. HydDB: a web tool for hydrogenase classification and analysis. Sci Rep. 2016;6:34212.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Fuchs BM, Wallner G, Beisker W, Schwippl I, Ludwig W, Amann R. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl Environ Microbiol. 1998;64:4973–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 44.

    Schramm A, Fuchs BM, Nielsen JL, Tonolla M, Stahl DA. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ Microbiol. 2002;4:713–20.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Lindahl V. Improved soil dispersion procedures for total bacterial counts, extraction of sandy clayey silt soil bacteria and cell survival. J Microbiol Meth. 1996;25:279–86.

    Article 

    Google Scholar 

  • 46.

    Ferrari BC, Tujula N, Stoner K, Kjelleberg S. Catalysed reporter deposition-FISH allows for enrichment independent detection of microcolony forming soil bacteria. Appl Environ Microbiol. 2006;72:918–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Kim M, Lim HS, Hyun CU, Cho A, Noh HJ, Hong SG, et al. Local-scale variation of soil bacterial communities in ice-free regions of maritime Antarctica. Soil Biol Biochem. 2019;133:165–73.

    CAS 
    Article 

    Google Scholar 

  • 48.

    Islam ZF, Welsh C, Bayly K, Grinter R, Southam G, Gagen EJ, et al. A widely distributed hydrogenase oxidises atmospheric H2 during bacterial growth. ISME J. 2020;14:2649–58.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Myers MR, King GM. Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. Int J Syst Evol Microbiol. 2016;66:5328–35.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Cordero PRF, Bayly K, Leung PM, Huang C, Islam ZF, Schittenhelm RB, et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 2019;13:2868–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Tremblay PL, Lovley DR. Role of the NiFe hydrogenase Hya in oxidative stress defense in Geobacter sulfurreducens. J Bacteriol. 2012;194:2248–53.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Greening C, Cook GM. Integration of hydrogenase expression and hydrogen sensing in bacterial cell physiology. Curr Opin Microbiol. 2014;18:30–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    English RS, Lorbach SC, Qin X, Shively JM. Isolation and characterization of a carboxysome shell gene from Thiobacillus neapolitanus. Mol Microbiol. 1994;12:647–54.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Bonomi HR, Toum L, Sycz G, Sieira R, Toscani AM, Gudesblat GE, et al. Xanthomonas campestris attenuates virulence by sensing light through a bacteriophytochrome photoreceptor. EMBO Rep. 2016;17:1565–77.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Gamiz-Hernandez AP, Kaila VRI. Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein. Phys Chem Chem Phys. 2016;18:2802–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Zhang E, Thibaut LM, Terauds A, Raven M, Tanaka MM, van Dorst J, et al. Lifting the veil on arid-to-hyperarid Antarctic soil microbiomes: a tale of two oases. Microbiome. 2020;8:37.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011;1807:1398–413.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    McCrindle SL, Kappler U, McEwan AG. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv Micro Physiol. 2005;50:147–98.

    CAS 
    Article 

    Google Scholar 

  • 59.

    Bogachev AV, Bertsova YV, Bloch DA, Verkhovsky MI. Urocanate reductase: identification of a novel anaerobic respiratory pathway in Shewanella oneidensis MR-1. Mol Microbiol. 2012;86:1452–63.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Hopper AC, Li Y, Cole JA. A critical role for the cccA gene product, cytochrome c2, in diverting electrons from aerobic respiration to denitrification in Neisseria gonorrhoeae. J Bacteriol. 2013;195:2518–29.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    Nichols NN, Harwood CS. PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J Bacteriol. 1997;179:5056–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Fraga J, Maranha A, Mendes V, Pereira PJB, Empadinhas N, Macedo-Ribeiro S. Structure of mycobacterial maltokinase, the missing link in the essential GlgE-pathway. Sci Rep. 2015;5:8026.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, et al. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiol. 2012;12:207.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Mougous JD, Petzold CJ, Senaratne RH, Lee DH, Akey DL, Lin FL, et al. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis. Nat Struct Mol Biol. 2004;11:721–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 65.

    Oren A. Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol. 2002;28:56–63.

    CAS 
    Article 

    Google Scholar 

  • 66.

    Cheggour A, Fanuel L, Duez C, Joris B, Bouillenne F, Devreese B, et al. The dppA gene of Bacillus subtilis encodes a new D-aminopeptidase. Mol Microbiol. 2000;38:504–13.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Geueke B, Heck T, Limbach M, Nesatyy V, Seebach D, Kohler HPE. Bacterial β-peptidyl aminopeptidases with unique substrate specificities for β-oligopeptides and mixed β,α-oligopeptides. FEBS J. 2006;273:5261–72.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Driessen AJM, van de Vossenberg JLM, Konings WN. Membrane composition and ion-permeability in extremophiles. FEMS Microbiol Rev. 1996;18:139–48.

    CAS 
    Article 

    Google Scholar 

  • 69.

    Jones DS, Albrecht HL, Dawson KS, Schaperdoth I, Freeman KH, Pi Y, et al. Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J. 2012;6:158–70.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Nguyen NL, Yu WJ, Gwak JH, Kim SJ, Park SJ, Herbold CW, et al. Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils. Front Microbiol. 2018;9:1982.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Xue J, Ahring BK. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol. 2011;77:2399–405.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Baker-Austin C, Dopson M. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 2007;15:165–71.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 73.

    Siebers A, Altendorf K. The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera. Eur J Biochem. 1988;178:131–40.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Milkman R. An Escherichia coli homologue of eukaryotic potassium channel proteins. Proc Natl Acad Sci. 1994;91:3510–4.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Holtmann G, Bakker EP, Uozumi N, Bremer E. KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J Bacteriol. 2003;185:1289–98.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Castanie-Cornet MP, Penfound TA, Smith D, Elliott JF, Foster JW. Control of acid resistance in Escherichia coli. J Bacteriol. 1999;181:3525–35.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Geisseler D, Horwath WR. Regulation of extracellular protease activity in soil in response to different sources and concentrations of nitrogen and carbon. Soil Biol Biochem. 2008;40:3040–8.

    CAS 
    Article 

    Google Scholar 

  • 78.

    Einsle O, Messerschmidt A, Stach P, Bourenkov GP, Bartunik HD, Huber R, et al. Structure of cytochrome c nitrite reductase. Nature. 1999;400:476–80.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Simon J, Pisa R, Stein T, Eichler R, Klimmek O, Gross R. The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase (NrfA) in the membrane of Wolinella succinogenes. Eur J Biochem. 2001;268:5776–82.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Nair RV, Bennett GN, Papoutsakis ET. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J Bacteriol. 1994;176:871–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Axen SD, Erbilgin O, Kerfeld CA. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput Biol. 2014;10:e1003898.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 82.

    Erbilgin O, McDonald KL, Kerfeld CA. Characterization of a planctomycetal organelle: a novel bacterial microcompartment for the aerobic degradation of plant saccharides. Appl Environ Microbiol. 2014;80:2193–205.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 83.

    Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Srinivasan V, Morowitz HJ. The canonical network of autotrophic intermediary metabolism: minimal metabolome of a reductive chemoautotroph. Biol Bull. 2009;216:126–30.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Nunoura T, Chikaraishi Y, Izaki R, Suwa T, Sato T, Harada T, et al. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile. Science. 2018;359:559–63.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 86.

    Bekal S, Van Beeumen J, Samyn B, Garmyn D, Henini S, Diviès C, et al. Purification of Leuconostoc mesenteroides citrate lyase and cloning and characterization of the citCDEFG gene cluster. J Bacteriol. 1998;180:647–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Dimroth P, Jockel P, Schmid M. Coupling mechanism of the oxaloacetate decarboxylase Na(+) pump. Biochim Biophys Acta. 2001;1505:1–14.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 88.

    Mulkidjanian AY, Dibrov P, Galperin MY. The past and present of sodium energetics: may the sodium-motive force be with you. Biochim Biophys Acta. 2008;1777:985–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Lewis Smith RI. Plant community dynamics in Wilkes Land, Antarctica, vol. 3. Proceedings of the NIPR Symposium on Polar Biology. 1990. p. 229–44.

  • 90.

    Seppelt RD. Plant communities at Wilkes Land. In: Geoecology of Antarctic ice-free coastal landscapes. Ecological studies (Analysis and synthesis), vol. 154. Springer; 2002. p. 233–48.


  • Source: Ecology - nature.com

    Transforming lives by providing safe drinking water

    Local adaptation to continuous mowing makes the noxious weed Solanum elaeagnifolium a superweed candidate by improving fitness and defense traits