in

Leadership – not followership – determines performance in ant teams

  • 1.

    Wilson, E. O. The insect societies. (Harvard University Press, Cambridge, Massachusetts, USA, 1971).

    Google Scholar 

  • 2.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Robson, S. K. & Traniello, J. F. Key individuals and the organisation of labor in ants. In Information processing in social insects, 239–259 (Springer, 1999).

  • 4.

    Smith, A. The wealth of nations (London, Methuen & Co, 1776).

  • 5.

    Oster, G. F. & Wilson, E. O. Caste and ecology in the social insects (Princeton University Press, 1978).

  • 6.

    Jeanne, R. L. The evolution of the organization of work in social insects. Italian J. Zool. 20, 119–133 (1986).

    Google Scholar 

  • 7.

    Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 11, 287–293 (1982).

    Article 

    Google Scholar 

  • 8.

    Franks, N. R. The organization of working teams in social insects. Trends Ecol. Evol. 2, 72–75 (1987).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Robinson, G. E. Regulation of division of labor in insect societies. Ann. Rev. Entomol. 37, 637–665 (1992).

    CAS 
    Article 

    Google Scholar 

  • 10.

    O’Donnell, S. & Jeanne, R. L. Forager specialization and the control of nest repair in Polybia occidentalis olivier (Hymenoptera: Vespidae). Behav. Ecol. Sociobiol. 27, 359–364 (1990).

    Article 

    Google Scholar 

  • 11.

    Wahl, L. Evolving the division of labour: generalists, specialists and task allocation. J. Theor. Biol. 219, 371–388 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Jaffé, R., Kronauer, D. J., Bernhard Kraus, F., Boomsma, J. J. & Moritz, R. F. Worker caste determination in the army ant Eciton burchellii. Biol. Lett. 3, 513–516 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Kuhn, S. L. & Stiner, M. C. What’s a mother to do? The division of labor among Neandertals and modern humans in Eurasia. Curr. Anthropol. 47, 953–981 (2006).

    Article 

    Google Scholar 

  • 14.

    Wilson, E. O. Caste and division of labor in leaf-cutter ants (hymenoptera: Formicidae: Atta). Behav. Ecol. Sociobiol. 7, 157–165 (1980).

    Article 

    Google Scholar 

  • 15.

    Mirenda, J. T. & Vinson, S. B. Division of labour and specification of castes in the red imported fire ant solenopsis invicta buren. Animal Behav. 29, 410–420 (1981).

    Article 

    Google Scholar 

  • 16.

    Detrain, C. & Pasteels, J. Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant, pheidole pallidula (nyl.)(hymenoptera: Myrmicinae). J. Insect behav. 4, 157–176 (1991).

    Article 

    Google Scholar 

  • 17.

    Theraulaz, G., Bonabeau, E. & Denuebourg, J. Response threshold reinforcements and division of labour in insect societies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 327–332 (1998).

    Article 

    Google Scholar 

  • 18.

    Johnson, B. R. Organization of work in the honeybee: a compromise between division of labour and behavioural flexibility. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 147–152 (2003).

    Article 

    Google Scholar 

  • 19.

    Dukas, R. & Visscher, P. K. Lifetime learning by foraging honey bees. Animal Behav. 48, 1007–1012 (1994).

    Article 

    Google Scholar 

  • 20.

    Richardson, T. O., Mullon, C., Marshall, J. A., Franks, N. R. & Schlegel, T. The influence of the few: a stable ‘oligarchy’ controls information flow in house-hunting ants. Proc. R. Soc. B 285, 20172726 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 21.

    Trumbo, S. T. & Robinson, G. E. Learning and task interference by corpse-removal specialists in honey bee colonies. Ethology 103, 966–975 (1997).

    Article 

    Google Scholar 

  • 22.

    Julian, G. E. & Cahan, S. Undertaking specialization in the desert leaf-cutter ant Acromyrmex versicolor. Animal Behav. 58, 437–442 (1999).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Dukas, R. Life history of learning: performance curves of honeybees in settings that minimize the role of learning. Animal Behav. 75, 1125–1130 (2008).

    Article 

    Google Scholar 

  • 24.

    Charbonneau, D., Sasaki, T. & Dornhaus, A. Who needs ‘lazy’workers? inactive workers act as a ‘reserve’labor force replacing active workers, but inactive workers are not replaced when they are removed. PloS one 12, e0184074 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Crall, J. D. et al. Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat. Commun. 9, 1201 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Franks, N. R., Pratt, S. C., Mallon, E. B., Britton, N. F. & Sumpter, D. J. Information flow, opinion polling and collective intelligence in house–hunting social insects. Philosop. Trans. R. Soc. Lond. Ser. B Biol. Sci. 357, 1567–1583 (2002).

    Article 

    Google Scholar 

  • 27.

    Pratt, S. C., Mallon, E. B., Sumpter, D. J. & Franks, N. R. Quorum sensing, recruitment, and collective decision-making during colony emigration by the ant Leptothorax albipennis. Behav. Ecol. Sociobiol. 52, 117–127 (2002).

    Article 

    Google Scholar 

  • 28.

    Möglich, M. Social organization of nest emigration in Leptothorax (Hym., Form.). Insectes Sociaux 25, 205–225 (1978).

    Article 

    Google Scholar 

  • 29.

    Visscher, P. K. Group decision making in nest-site selection among social insects. Ann. Rev. Entomol. 52, 255–275 (2007).

    CAS 
    Article 

    Google Scholar 

  • 30.

    McGlynn, T. P. The ecology of nest movement in social insects. Ann. Rev. Entomol. 57, 291–308 (2012).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Franks, N. R. & Richardson, T. Teaching in tandem-running ants. Nature 439, 153–153 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Richardson, T. O., Sleeman, P. A., McNamara, J. M., Houston, A. I. & Franks, N. R. Teaching with evaluation in ants. Curr. Biol. 17, 1520–1526 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Franklin, E. L., Richardson, T. O., Sendova-Franks, A. B., Robinson, E. J. & Franks, N. R. Blinkered teaching: tandem running by visually impaired ants. Behav. Ecol. Sociobiol. 65, 569–579 (2011).

    Article 

    Google Scholar 

  • 34.

    Franks, N. R. et al. Ant search strategies after interrupted tandem runs. J. Exper. Biol. 213, 1697–1708 (2010).

    Article 

    Google Scholar 

  • 35.

    Flack, J. C., Krakauer, D. C. & de Waal, F. B. M. Robustness mechanisms in primate societies: a perturbation study. Proc. R. Soc. B Biol. Sci. 272, 1091–1099 (2005).

    Article 

    Google Scholar 

  • 36.

    Pinter-Wollman, N., Hubler, J., Holley, J.-A., Franks, N. R. & Dornhaus, A. How is activity distributed among and within tasks in Temnothorax ants? Behav. Ecol. Sociobiol. 66, 1407–1420 (2012).

    Article 

    Google Scholar 

  • 37.

    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach (Springer Science & Business Media, 2003).

  • 38.

    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).

    Article 

    Google Scholar 

  • 39.

    Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Symonds, M. R. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).

    Article 

    Google Scholar 

  • 41.

    Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. 112, 4690–4695 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Pratt, S. C., Sumpter, D. J., Mallon, E. B. & Franks, N. R. An agent-based model of collective nest choice by the ant Temnothorax albipennis. Animal Behav. 70, 1023–1036 (2005).

    Article 

    Google Scholar 

  • 43.

    Volny, V. P. & Gordon, D. M. Genetic basis for queen–worker dimorphism in a social insect. Proc. Natl Acad. Sci. 99, 6108–6111 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Walsh, J. T., Warner, M. R., Kase, A., Cushing, B. J. & Linksvayer, T. A. Ant nurse workers exhibit behavioural and transcriptomic signatures of specialization on larval stage. Animal Behav. 141, 161–169 (2018).

    Article 

    Google Scholar 

  • 45.

    Seeley, T. D. Division of labor between scouts and recruits in honeybee foraging. Behav. Ecol. Sociobiol. 12, 253–259 (1983).

    Article 

    Google Scholar 

  • 46.

    Boesch, C. Cooperative hunting roles among tai chimpanzees. Human Nat. 13, 27–46 (2002).

    Article 

    Google Scholar 

  • 47.

    Stander, P. E. Cooperative hunting in lions: the role of the individual. Behav. Ecol. Sociobiol. 29, 445–454 (1992).

    Article 

    Google Scholar 

  • 48.

    Gazda, S. K., Connor, R. C., Edgar, R. K. & Cox, F. A division of labour with role specialization in group–hunting bottlenose dolphins (tursiops truncatus) off cedar key, florida. Proc. R. Soc. B Biol. Sci. 272, 135–140 (2005).

    Article 

    Google Scholar 

  • 49.

    Nagy, M., Ákos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464, 890–893 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 50.

    Nagy, M. et al. Context-dependent hierarchies in pigeons. Proc. Natl Acad. Sci. USA 110, 13049–13054 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 51.

    Fewell, J. H., Armbruster, D., Ingraham, J., Petersen, A. & Waters, J. S. Basketball teams as strategic networks. PloS One 7, e47445 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Alleman, A., Stoldt, M., Feldmeyer, B. & Foitzik, S. Tandem-running and scouting behaviour are characterized by up-regulation of learning and memory formation genes within the ant brain. Mol. Ecol. 28, 2342–2359 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 53.

    Collett, T. S. & Collett, M. Memory use in insect visual navigation. Nat. Rev. Neurosci. 3, 542 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Collett, T. S., Graham, P. & Durier, V. Route learning by insects. Curr. Opin. Neurobiol. 13, 718–725 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189, 579–588 (2003).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Langridge, E. A., Franks, N. R. & Sendova-Franks, A. B. Improvement in collective performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529 (2004).

    Article 

    Google Scholar 

  • 57.

    Ravary, F., Lecoutey, E., Kaminski, G., Châline, N. & Jaisson, P. Individual experience alone can generate lasting division of labor in ants. Curr. Biol. 17, 1308–1312 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 58.

    Chittka, L. & Muller, H. Learning, specialization, efficiency and task allocation in social insects. Commun. Integr. Biol. 2, 151–154 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Franklin, E. L., Robinson, E. J., Marshall, J. A., Sendova-Franks, A. B. & Franks, N. R. Do ants need to be old and experienced to teach? J. Exp. Biol. 215, 1287–1292 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 60.

    Westhus, C., Kleineidam, C. J., Roces, F. & Weidenmüller, A. Behavioural plasticity in the fanning response of bumblebee workers: impact of experience and rate of temperature change. Animal Behav. 85, 27–34 (2013).

    Article 

    Google Scholar 

  • 61.

    Dukas, R. Animal expertise: mechanisms, ecology and evolution. Animal Behav. 147, 199–210 (2019).

    Article 

    Google Scholar 

  • 62.

    Carter, C. E. & Grahn, J. A. Optimizing music learning: exploring how blocked and interleaved practice schedules affect advanced performance. Front. Psychol. 7, 1251 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Stroeymeyt, N., Franks, N. R. & Giurfa, M. Knowledgeable individuals lead collective decisions in ants. J. Exp. Biol. 214, 3046–3054 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 64.

    Stroeymeyt, N., Giurfa, M. & Franks, N. R. Information certainty determines social and private information use in ants. Sci. Rep. 7, 43607 (2017).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 65.

    Hansen, M. J., Schaerf, T. M. & Ward, A. J. The influence of nutritional state on individual and group movement behaviour in shoals of crimson-spotted rainbowfish (Melanotaenia duboulayi). Behav. Ecol. Sociobiol. 69, 1713–1722 (2015).

    Article 

    Google Scholar 

  • 66.

    Jolles, J. W., Boogert, N. J., Sridhar, V. H., Couzin, I. D. & Manica, A. Consistent individual differences drive collective behavior and group functioning of schooling fish. Curr. Biol. 27, 2862–2868 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 67.

    Leca, J.-B., Gunst, N., Thierry, B. & Petit, O. Distributed leadership in semifree-ranging white-faced capuchin monkeys. Animal Behav. 66, 1045–1052 (2003).

    Article 

    Google Scholar 

  • 68.

    McComb, K. et al. Leadership in elephants: the adaptive value of age. Proc. R. Soc. B Biol. Sci. 278, 3270–3276 (2011).

    Article 

    Google Scholar 

  • 69.

    Jolles, J. W., King, A. J. & Killen, S. S. The role of individual heterogeneity in collective animal behaviour. Trends Ecol. Evol. 35, 278–291 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 70.

    Cook, C. N. et al. Individual differences in learning and biogenic amine levels influence the behavioural division between foraging honeybee scouts and recruits. J. Animal Ecol. 88, 236–246 (2019).

    Article 

    Google Scholar 

  • 71.

    Eyer, P.-A., Freyer, J. & Aron, S. Genetic polyethism in the polyandrous desert ant cataglyphis cursor. Behav. Ecol. 24, 144–151 (2013).

    Article 

    Google Scholar 

  • 72.

    Franks, N. R., Mallon, E. B., Bray, H. E., Hamilton, M. J. & Mischler, T. C. Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants. Animal Behav. 65, 215–223 (2003).

    Article 

    Google Scholar 

  • 73.

    Dornhaus, A., Franks, N. R., Hawkins, R. & Shere, H. Ants move to improve: colonies of Leptothorax albipennis emigrate whenever they find a superior nest site. Animal Behav. 67, 959–963 (2004).

    Article 

    Google Scholar 

  • 74.

    Planqué, R., Dechaume-Moncharmont, F.-X., Franks, N. R., Kovacs, T. & Marshall, J. A. Why do house-hunting ants recruit in both directions? Naturwissenschaften 94, 911–918 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Innovations in water accessibility

    Changes in soil water holding capacity and water availability following vegetation restoration on the Chinese Loess Plateau