Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl Acad. Sci. USA 107, 5687–5692 (2010).
Google Scholar
Wiedmann, T. O. et al. The material footprint of nations. Proc. Natl Acad. Sci. USA 112, 6271–6276 (2015).
Google Scholar
Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).
Google Scholar
Brandt, M. et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2, 827–835 (2018).
Google Scholar
Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005).
Google Scholar
Bond, W. J. & Keane, R. E. Fires, Ecological Effects of☆. In Reference Module in Life Sciences (Elsevier, 2017); https://doi.org/10.1016/B978-0-12-809633-8.02098-7
Valentini, R. et al. A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences 11, 381–407 (2014).
Google Scholar
Williams, C. A. et al. Africa and the global carbon cycle. Carbon Balance Manag. 2, 3 (2007).
Google Scholar
Hanan, N. P. Agroforestry in the Sahel. Nat. Geosci. 11, 296–297 (2018).
Google Scholar
Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).
Google Scholar
Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade. Nature 509, 86–90 (2014).
Google Scholar
Feng, S. & Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 13, 10081–10094 (2013).
Google Scholar
Anchang, J. Y. et al. Trends in woody and herbaceous vegetation in the savannas of West Africa. Remote Sens. 11, 576 (2019).
Google Scholar
Andela, N., Liu, Y. Y., van Dijk, A. I. J. M., de Jeu, R. A. M. & McVicar, T. R. Global changes in dryland vegetation dynamics (1988–2008) assessed by satellite remote sensing: comparing a new passive microwave vegetation density record with reflective greenness data. Biogeosciences 10, 6657–6676 (2013).
Google Scholar
Kaptué, A. T., Prihodko, L. & Hanan, N. P. On regreening and degradation in Sahelian watersheds. Proc. Natl Acad. Sci. USA 112, 12133–12138 (2015).
Google Scholar
Schneider, S. H. The greenhouse effect: science and policy. Science 243, 771–781 (1989).
Google Scholar
Walsh, J. et al. Climate Change Impacts in the United States: The Third National Climate Assessment Ch. 2 (US Global Change Research Program, 2014); https://doi.org/10.7930/J0KW5CXT
Filatova, T., Polhill, J. G. & van Ewijk, S. Regime shifts in coupled socio-environmental systems: review of modelling challenges and approaches. Environ. Model. Softw. 75, 333–347 (2016).
Google Scholar
Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).
Google Scholar
Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).
Google Scholar
Keys, P. W. et al. Anthropocene risk. Nat. Sustain. 2, 667–673 (2019).
Google Scholar
Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).
Google Scholar
Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
Google Scholar
Hanan, N. P., Prihodko, L., Ross, C. W., Bucini, G. & Tredennick, A. T. Gridded Estimates of Woody Cover and Biomass across Sub-Saharan Africa, 2000-2004 (ORNL DAAC, 2020); https://doi.org/10.3334/ORNLDAAC/1777
Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).
Google Scholar
Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420 (2016).
Google Scholar
Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).
Google Scholar
Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).
Google Scholar
Anchang, J. Y. et al. Toward operational mapping of woody canopy cover in tropical savannas using Google Earth Engine. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2020.00004 (2020).
Kahiu, M. N. & Hanan, N. P. Fire in sub-Saharan Africa: the fuel, cure and connectivity hypothesis. Glob. Ecol. Biogeogr. 27, 946–957 (2018).
Google Scholar
Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).
Google Scholar
Ross, C. W. et al. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling. Sci. Data 5, 180091 (2018).
Google Scholar
Lüdeke, M. K. B., Moldenhauer, O. & Petschel-Held, G. Rural poverty driven soil degradation under climate change: the sensitivity of the disposition towards the Sahel Syndrome with respect to climate. Environ. Model. Assess. 4, 315–326 (1999).
Google Scholar
Hansfort, S. L. & Mertz, O. Challenging the woodfuel crisis in West African woodlands. Hum. Ecol. 39, 583 (2011).
Google Scholar
Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).
Google Scholar
Wei, F. et al. Nonlinear dynamics of fires in Africa over recent decades controlled by precipitation. Glob. Change Biol. 26, 4495–4505 (2020).
Google Scholar
Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett. 11, 084003 (2016).
Google Scholar
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Google Scholar
Potapov, P. et al. Mapping the World’s intact forest landscapes by remote sensing. Ecol. Soc. 13, 2 (2008).
Google Scholar
Herold, M., Mayaux, P., Woodcock, C. E., Baccini, A. & Schmullius, C. Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 112, 2538–2556 (2008).
Google Scholar
Martens, C. et al. Large uncertainties in future biome changes in Africa call for flexible climate adaptation strategies. Glob. Change Biol. 27, 340–358 (2021).
Google Scholar
Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).
Google Scholar
Reich, P. B., Hobbie, S. E. & Lee, T. D. Plant growth enhancement by elevated CO2 eliminated by joint water and nitrogen limitation. Nat. Geosci. 7, 920–924 (2014).
Google Scholar
Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).
Google Scholar
Körner, C. A matter of tree longevity. Science 355, 130–131 (2017).
Google Scholar
Olson, D. M. & Dinerstein, E. The Global 200: priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224 (2002).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Massey, F. J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951).
Google Scholar
Jarvis, A., Reuter, H. I., Nelson, A. & Guevara, E. Hole-filled SRTM for the globe: version 4: data grid (CGIAR Consortium for Spatial Information, 2008).
Ross, C. W. et al. Global Hydrologic Soil Groups (HYSOGs250m) for Curve Number-Based Runoff Modeling (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/1566
Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. https://doi.org/10.1029/2011JG001708 (2011).
Jucker, T. et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Change Biol. 23, 177–190 (2017).
Google Scholar
Sanderson, E. W. et al. The human footprint and the last of the wild. BioScience 52, 891–904 (2002).
Google Scholar
Molnar, C., Bischl, B. & Casalicchio, G. iml: an R package for interpretable machine learning. J. Open Source Softw. 3, 786 (2018).
Google Scholar
Wickham, H. tidyverse: Easily Install and Load the ‘Tidyverse’ (CRAN, 2017).
Hijmans, R. J. et al. raster: Geographic Data Analysis and Modeling (CRAN, 2016).
Perpiñán, O. & Hijmans, R. rasterVis (CRAN, 2018).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Zeileis, A. et al. colorspace: A toolbox for manipulating and assessing colors and palettes. J. Stat. Soft. https://doi.org/10.18637/jss.v096.i01 (2020).
Neuwirth, E. RColorBrewer: ColorBrewer Palettes (CRAN, 2014).
Auguie, B. gridExtra: Miscellaneous Functions for ‘Grid’ Graphics (CRAN, 2017).
Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).
Google Scholar
Ross, C. W., Hanan, N. P. & Prihodko, L. Prediction Maps: Woody-Biomass Projections and Drivers of Change in Sub-Saharan Africa (Figshare, 2021); https://doi.org/10.6084/M9.FIGSHARE.14150210.V2
Ross, C. W. R Code for Woody-Biomass Projections and Drivers of Change in Sub-Saharan Africa (Figshare, 2021); https://doi.org/10.6084/M9.FIGSHARE.14143799.V1
Source: Ecology - nature.com