in

Current biological approaches for management of crucifer pests

  • 1.

    https://eands.dacnet.nic.in/PDF/State_of_Indian_Agriculture,2015-16.pdf

  • 2.

    Amoabeng, B. W. et al. Tri-trophic insecticidal effects of African plants against cabbage pests. PloS. One. 8(10), (2013).

  • 3.

    Hasan, F. & Ansari, M. S. Effect of different cole crops on the biological parameters of Pieris brassicae (L.)(Lepidoptera: Pieridae) under laboratory conditions. J. Crop Sci. Biotechnol. 13(3), 195–202 (2010).

    Article 

    Google Scholar 

  • 4.

    Yang, H., Piao, X., Zhang, L., Song, S. & Xu, Y. Ginsenosides from the stems and leaves of Panax ginseng show antifeedant activity against Plutella xylostella (Linnaeus). Ind. Crops. Prod. 124, 412–417 (2018).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Mazhawidza, E. & Mvumi, B. M. Field evaluation of aqueous indigenous plant extracts against the diamondback moth, Plutella xylostella L. and the rape aphid, Brevicoryne brassicae L. in brassica production. Ind. Crop. Prod. 110, 36–44 (2017).

    Article 

    Google Scholar 

  • 6.

    Akhtar, Y., Isman, M. B., Niehaus, L. A., Lee, C. H. & Lee, H. S. Antifeedant and toxic effects of naturally occurring and synthetic quinones to the cabbage looper. Trichoplusia ni. Crop Prot. 31(1), 8–14 (2012).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Aktar, W., Sengupta, D. & Chowdhury, A. Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip. Toxicol. 2(1), 1–12 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Couto, I. F. S. et al. Botanical extracts of the brazilian savannah affect feeding and oviposition of Plutella xylostella (Linnaeus, 1758)(Lepidoptera: Plutellidae). J. Agric. Sci. 11(5), (2019).

  • 9.

    Lengai, G. M., Muthomi, J. W. & Mbega, E. R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 7, e00239 (2020).

    Google Scholar 

  • 10.

    Hikal, W. M., Baeshen, R. S. & Said-Al Ahl, H. A. Botanical insecticide as simple extractives for pest control. Cogent. Biol. 3(1), 1404274 (2017).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Isman, M. B. Botanical insecticides, deterrents, and repellent in modern agriculture and an increasingly regulated world. Ann. Rev. Entomol. 51, 45–66 (2006).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Petacci, F. et al. Phytochemistry and quantification of polyphenols in extracts of the Asteraceae weeds from Diamantina, Minas Gerais State Brazil. Planta. Daninha. 30, 9–15 (2012).

    Article 

    Google Scholar 

  • 13.

    Furlong, M. J., Wright, D. J. & Dosdall, L. M. Diamondback moth ecology and management: problems, progress, and prospects. Annu. Rev. Entomol. 58, 517–541 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Sulifoa, J. B., Fangupo, S. & Kant, R. Oviposition periodicity, egg morphology and life history of large cabbage moth Crocidolomia pavonana population in Samoa. SPJNAS 34(2), 29–34 (2016).

    Google Scholar 

  • 15.

    Lal, M. N., & Bhajan Ram. Cabbage butterfly, Pieris brassicae L.-an upcoming menace for Brassica oilseed crops in Northern India. Cruciferae Newsletter 25. (2004).

  • 16.

    Chalfant, R. B., Denton, W. H., Schuster, D. J. & Workman, R. B. Management of cabbage caterpillars in Florida and Georgia by using visual damage thresholds. J. Econ. Entomol. 72, 411–413 (1979).

    Article 

    Google Scholar 

  • 17.

    Lim, G. S., Sivapragasam, A., & Loke, W. H. Crucifer insect pest problems: trends, issues and management strategies. In The Management of diamondback and other crucifer pests. Proceedings of the third international workshop, Kuala Lumpur, Malaysia. (1996).

  • 18.

    Tumutegyereize, J. K. Handbook on identification and management of pests and diseases of cabbage and other brassicas in Uganda. (2008).

  • 19.

    Amoabeng, B. W., Johnson, A. C. & Gurr, G. M. Natural enemy enhancement and botanical insecticide source: a review of dual use companion plants. Appl. Entomol. Zool. 54(1), 1–19 (2019).

    Article 

    Google Scholar 

  • 20.

    Gurr, G. M., Steve, D. W., Douglas, A. L. & Minsheng, Y. Habitat management to suppress pest populations: progress and prospects. Annu. Rev. Entomol. 62, 91–109 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Warwick, H. R. I., & Wellesbourne, W. Control of Diamond back Moth (Plutella xylostella) on Cabbage (Brassica oleracea var capitata) using Intercropping with Non-Host Crops “E. Asare-Bediako,” AA Addo-Quaye and A. Mohammed” Department of Crop Science, University of Cape Coast, Cape Coast, Ghana. Am. J. Food Technol. 5(4), 269–274 (2010).

    Article 

    Google Scholar 

  • 22.

    Xu, Q. C. et al. Relay-intercropping into tomato decreases cabbage pest incidence. J Food. Agric. Environ. 8, 1037–1041 (2010).

    Google Scholar 

  • 23.

    Yarou, B. B et al. Efficacy of Basil-Cabbage intercropping to control insect pests in Benin, West Africa. Commun. Agric. Biol. 82, 157–166(2017)

  • 24.

    Shukla, A. & Kumar, A. The diamond back moth, Plutella xylostella a problematic pest of Brassica crop. J. Adv. Indian. Entomol. 1, 229–240 (2005).

    Google Scholar 

  • 25.

    Olesen, J. E. & Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 16, 239–262. https://doi.org/10.1016/S1161-0301(02)00004-7 (2002).

    Article 

    Google Scholar 

  • 26.

    Dey, D., Routray, S., Baral, S. & Mahantheshwara, B. Effect of planting dates and botanical insecticides against major Lepidopterous pests of cabbage: a review. Agric. Rev. 38(1), 60–66 (2017).

    Google Scholar 

  • 27.

    Tanyi, C. B., Ngosong, C. & Ntonifor, N. N. Effects of climate variability on insect pests of cabbage: adapting alternative planting dates and cropping pattern as control measures. Chem. Biol. Technol. Agric. 5(1), 25 (2018).

    Article 

    Google Scholar 

  • 28.

    Viraktamath, S., Shekarappa Reddy, B. S. & Patil, M. G. Effect of date of planting on the extent of damage by the Diamond back moth, Plutella xylostella on cabbage. Karnataka. J. Agric. Sci. 7, 238–239 (1994).

    Google Scholar 

  • 29.

    Pickett, J. A., Christine, M. W., Charles, A. O. M. & Zeyaur, R. K. Push–pull farming systems. Curr. Opi. Biotech. 26, 125–132 (2014).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Kergunteuil, A., Dugravot, S., Danner, H., Van Dam, N. M. & Cortesero, A. M. Characterizing volatiles and attractiveness of five brassicaceous plants with potential for a ‘push-pull’strategy toward the cabbage root fly Delia radicum. J. Chem. Ecol. 41(4), 330–339 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Khan, Z. R. et al. Achieving food security for one million subSaharan African poor through push—pull innovation by 2020. Philos. Trans. R. Soc. B 369, 20120284 (2014).

    Article 

    Google Scholar 

  • 32.

    Cook, S. M., Khan, Z. R. &Pickett, J. A. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 52, 375–400 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Khan, Z. R. et al. Intercropping increases parasitism of pests. Nature 388, 631–632 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Khan, Z. R., Pickett, J. A., Berg, J. V. D., Wadhams, L. J. & Woodcock, C. M. Exploiting chemical ecology and species diversity: stem borer and striga control for maize and sorghum in Africa. Pest. Manag. Sci. 56, 957–962 (2000).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Parolin, P. et al. Secondary plants used in biological control: a review. Int. J. Pest Manag. 58(2), 91–100 (2012).

    Article 

    Google Scholar 

  • 36.

    Teal P.E.A. Sex attractant pheromones. In: Encyclopedia of Entomology. https://doi.org/10.1007/0-306-48380-7_3866 (Springer, Dordrecht, 2004)

  • 37.

    Witzgall, P., Lindblom, T., Bengtsson, M., & Toth, M. The Pherolist. (2004) http://www.pherolist.slu.se/pherolist.php. Accessed 23 July 2013

  • 38.

    Witzgall, P., Stelinski, L., Gut, L. & Thomson, D. Codling moth management and chemical ecology. Ann Rev Entomol. 53(1), 503–522 (2008).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Schroeder, P. C., Shelton, A. M., Ferguson, C. S., Hoffmann, M. P. & Petzoldt, C. H. Application of synthetic sex pheromone for management of diamondback moth, Plutella xylostella, in cabbage. Entomol Exp. Appl. 94(3), 243–248 (2000).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Reddy, G. V. & Guerrero, A. New pheromones and insect control strategies. In Vitamins & hormones 83, 493–519. (Academic Press, 2010).

  • 41.

    Reddy, G. P. & Urs, K. D. Mass trapping of diamondback moth Plutella xylostella in cabbage fields using synthetic sex pheromones. Int. J. Pest Manag. 39(4), 125–126 (1997).

    Google Scholar 

  • 42.

    Isman, M. B. & Botanical insecticides, ,. deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 51, 45 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Isman, M. B. & Grieneisen, M. L. Botanical insecticide research: many publications, limited useful data. Trends Plant. Sci. 19(3), 140–145 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Campos, E. V. et al. Use of botanical insecticides for sustainable agriculture: Future perspectives. Ecol. Indic. 105, 483–495 (2019).

    CAS 
    Article 

    Google Scholar 

  • 45.

    El-Wakeil, N. E. Retracted Article: Botanical Pesticides and Their Mode of Action. Gesunde Pflanzen 65(4), 125–149 (2013).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Lengai, G. M., Muthomi, J. W. & Mbega, E. R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci. Afr. 7, e00239 (2020).

    Google Scholar 

  • 47.

    Bennett, R. N. & Wallsgrove, R. M. Secondary metabolites in plant defence mechanisms. New Phytol. 127, 617–633 (1994).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Samarasekera, J. Insecticidal natural products from Sri Lankan plants (Doctoral dissertation, The Open University) (1997).

  • 49.

    Bambawale, O. M., & Bhagat, S. O. M. E. S. H. W. A. R. Registration related issues in effective use of biopesticides in pest management. Biopesticides in environment and food security: Issuers and strategies, 265–285 (2012).

  • 50.

    Isman, M. B. A renaissance for botanical insecticides?. Pest Manag. Sci. 71(12), 1587–1590 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Begum, S., Wahab, A., Siddiqui, B. S. & Qamar, F. Nematicidal Constituents of the aerial parts of Lantana camara. J. Nat. Prod. 63, 765–767 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 52.

    Baidoo, P. K. & Adam, J. I. The effects of extracts of Lantana camara (L.) and Azadirachta indica (A. Juss) on the population dynamics of Plutella xylostella, Brevicoryne brassicae and Hellula undalis on cabbage (2012).

  • 53.

    Kumar, K. K. et al. Microbial biopesticides for insect pest management in India: current status and future prospects. J. Invertebr. Pathol. 165, 74–81 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Reddy, S. E., Dolma, S. K. & Bhardwaj, A. Plants of himalayan region as potential source of biopesticides for lepidopteran insect pests. Springer, New Delhi. In Herbal Insecticides, Repellents and Biomedicines: Effectiveness and Commercialization, 63–83 (2016).

  • 55.

    Dougoud, J., Toepfer, S., Bateman, M. & Jenner, W. H. Efficacy of homemade botanical insecticides based on traditional knowledge A review. Agron. Sustain. Dev. 39(4), 37 (2019).

    Article 
    CAS 

    Google Scholar 

  • 56.

    Sarasan, V., Kite, G. C., Sileshi, G. W. & Stevenson, P. C. Applications of phytochemical and in vitro techniques for reducing over-harvesting of medicinal and pesticidal plants and generating income for the rural poor. Plant Cell Rep. 30, 1163 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Figueiredo, A.C., Barroso, J.G., Pedro. L.G., Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J. 23(4), 213 (2008)

  • 58.

    Yakkundi, S. R., Thejavathi, R. & Ravindranath, B. Variation of azadirachtin content during growth and storage of neem (Azadirachta indica) seeds. J. Agric. Food Chem. 43(9), 2517 (1995).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Tak, J. H. & Isman, M. B. Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper Trichoplusia ni. Sci. Rep. 7, 42432 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Tak, J. H. & Isman, M. B. Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Sci. Rep. 5(1), 1–10 (2015).

    Google Scholar 

  • 61.

    Tak, J. H., Jovel, E. & Isman, M. B. Contact, fumigant, and cytotoxic activities of thyme and lemongrass essential oils against larvae and an ovarian cell line of the cabbage looper Trichoplusia ni. J. Pest. Sci. 89(1), 183–193 (2016).

    Article 

    Google Scholar 

  • 62.

    Pavela, R. Acute, synergistic and antagonistic effects of some aromatic compounds on the Spodoptera littoralis Boisd. (Lep, Noctuidae) larvae. Ind Crops Prod 60, 247–258 (2014)

  • 63.

    Arthurs, S. & Dara, S. K. Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 165, 13–21 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 64.

    NBAIR. ICAR-National Bureau of Agricultural Insect Resources, Newsletter,. Bengaluru. India 9(4p), 2017 (2017).

    Google Scholar 

  • 65.

    Maina, U. M., Galadima, I. B., Gambo, F. M. & Zakaria, D. A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J. Entomol. Zool. Stud. 6(1), 27–32 (2018).

    Google Scholar 

  • 66.

    Sujeetha, J. A. R., & Sahayaraj, K. Role of entomopathogenic fungus in pest management. In Basic and applied aspects of biopesticides (pp. 31–46). Springer, New Delhi. (2014).

  • 67.

    Glare, T. R., Jurat-Fuentes, J. L. & O’callaghan, M. Basic and applied research: entomopathogenic bacteria. In Microbial control of insect and mite pests 47–67. (Academic Press, 2017).

  • 68.

    Van Frankenhuyzen, K. Insecticidal activity of Bacillus thuringiensis crystal proteins. J. Invertebr. Pathol. 101(1), 1–16 (2009).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 69.

    Arora, N. K., Khare, E. & Maheshwari, D. K. Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In Plant growth and health promoting bacteria 97–116 (Springer, Berlin, Heidelberg 2010).

  • 70.

    Gupta, S. & Dikshit, A. K. Biopesticides: An ecofriendly approach for pest control. J. Biopestic.3(Special Issue), 186 (2010).

  • 71.

    Lacey, L. A., Frutos, R., Kaya, H. K. & Vail, P. Insect pathogens as biological control agents: do they have a future?. Biol. Control. 21(3), 230–248 (2001).

    Article 

    Google Scholar 

  • 72.

    Mishra, J., Tewari, S., Singh, S. & Arora, N. K. Biopesticides: where we stand? In Plant microbes symbiosis: Applied Facets, 37-75. (Springer. New Delhi, 2015)

  • 73.

    Aneja, K. R., Khan, S. A. & Aneja, A. Biopesticides an eco-friendly pestmanagement approach in agriculture: status and prospects. Kavaka 47, 145–154 (2016).

    Google Scholar 

  • 74.

    Kumar, R. et al. Chemical composition, cytotoxicity and insecticidal activities of Acorus calamus accessions from the western Himalayas. Ind. Crops. Prod. 94, 520–527 (2016).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Rioba, N. B. & Stevenson, P. C. Ageratum conyzoides L for the management of pests and diseases by small holder farmers. Ind. Crops. Prod. 110, 22–29 (2017).

    Article 

    Google Scholar 

  • 76.

    Datta, R., Kaur, A., Saraf, I., Singh, I. P. & Kaur, S. Effect of crude extracts and purified compounds of Alpinia galanga on nutritional physiology of a polyphagous lepidopteran pest, Spodoptera litura (Fabricius). Ecotoxicol. Environ. 168, 324–329 (2019).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Hwang, K. S., Kim, Y. K., Kim, Y. T., Lee, J. & Park, K. W. A tetracosatetraene as larvicidal compound isolated from Alpinia katsumadai. Ind. Crops. Prod. 109, 786–789 (2017).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Castillo-Sánchez, L. E., Jiménez-Osornio, J. J. & Delgado-Herrera, M. A. Secondary metabolites of the Annonaceae, Solanaceae and Meliaceae families used as biological control of insects. Trop. Subtrop. Agroecosyst. 12(3), 445–462 (2010).

    Google Scholar 

  • 79.

    Leatemia, J. A. & Isman, M. B. Efficacy of crude seed extracts of Annona squamosa against diamondback moth, Plutella xylostella L. in the greenhouse. Int. J. Pest. Manage. 50(2), 129–133 (2004).

    Article 

    Google Scholar 

  • 80.

    Okwute, S. K. Plants as potential sources of pesticidal agents: a review. Pesticides-Advances in Chemical and Botanical Pesticides. InTech (2012).

  • 81.

    Torres, A. L., Barros, R. & Oliveira, J. V. D. Effects of plant aqueous extracts on the development of Plutella xylostella (L.)(Lepidoptera: Plutellidae). Neotrop. Entomol. 30(1), 151–156 (2001).

    Article 

    Google Scholar 

  • 82.

    Sharma, A. & Gupta, R. Biological activity of some plant extracts against Pieris brassicae (Linn.). J. Biopestic. 2(1), 26–31 (2009).

    CAS 

    Google Scholar 

  • 83.

    Khanavi, M., Laghaei, P. & Isman, M. B. Essential oil composition of three native Persian plants and their inhibitory effects in the cabbage looper Trichoplusia ni. J. Asia-Pac. Entomol. 20(4), 1234–1240 (2017).

    Article 

    Google Scholar 

  • 84.

    Ma, S., Jia, R., Guo, M., Qin, K. & Zhang, L. Insecticidal activity of essential oil from Cephalotaxus sinensis and its main components against various agricultural pests. Ind. Crop. Prod. 150, 112403 (2020).

    CAS 
    Article 

    Google Scholar 

  • 85.

    Yankanchi, S. R. & Patil, S. R. Field efficacy of plant extracts on larval populations of Plutella xylostella L. and Helicoverpa armigera Hub and their impact on cabbage infestation. J. Biopestic. 2(1), 32–36 (2009).

    CAS 

    Google Scholar 

  • 86.

    Filomeno, C. A. et al. Corymbia spp. and Eucalyptus spp. essential oils have insecticidal activity against Plutella xylostella. Ind. Crops. Prod. 109, 374–383 (2017).

    CAS 
    Article 

    Google Scholar 

  • 87.

    de Souza Tavares, W., Akhtar, Y., Gonçalves, G. L. P., Zanuncio, J. C. & Isman, M. B. Turmeric powder and its derivatives from Curcuma longa rhizomes: insecticidal effects on cabbage looper and the role of synergists. Sci. Rep. 6, 34093 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 88.

    Tak, J. H., Jovel, E. & Isman, M. B. Comparative and synergistic activity of Rosmarinus officinalis L essential oil constituents against the larvae and an ovarian cell line of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Pest. Manag. Sci. 72(3), 474–480 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 89.

    Sanda, K., Koba, K., Poutouli, W., Idrissou, N. & Agbossou, A. B. Pesticidal propertties of Cymbopogon schoenatus against the Diamondback moth Plutella xylostella L (Lepidoptera: Hyponomeutidae). Discov. Innov. 19, 220–225 (2006).

    Google Scholar 

  • 90.

    Qin, X. P., Zhao, H. Y. & Yang, M. L. Antifeeding activities of Dodonaea viscose seed extracts against Plutella xylostella. Chin. J. Entomol. 4, (2008).

  • 91.

    Jahan, F., Abbasipour, H. & Hasanshahi, G. Fumigant toxicity and nymph production deterrence effect of five essential oils on adults of the cabbage aphid, Brevicoryne brassicae L. (Hemiptera: Aphididae). J. Essent. Oil. Bear. Pl. 19(1), 140–147 (2016).

    CAS 
    Article 

    Google Scholar 

  • 92.

    Adebisi, O., Dolma, S. K., Verma, P. K., Singh, B. & Reddy, S. E. Volatile, non-volatile composition and insecticidal activity of Eupatorium adenophorum Spreng against diamondback moth, Plutella xylostella (L.), and aphid Aphis craccivora Koch. Toxin. Rev. 38(2), 143–150 (2019).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Khan, Z. R. et al. Management of witchweed, Striga hermonthica, and stemborers in sorghum, Sorghum bicolor, through intercropping with greenleaf desmodium Desmodium intortum. Int. J. Pest. Manag. 52, 297–302 (2006).

    Article 

    Google Scholar 

  • 94.

    Afshar, F. H., Maggi, F., Iannarelli, R., Cianfaglione, K. & Isman, M. B. Comparative toxicity of Helosciadium nodiflorum essential oils and combinations of their main constituents against the cabbage looper, Trichoplusia ni (Lepidoptera). Ind. Crops. Prod. 98, 46–52 (2017).

    Article 
    CAS 

    Google Scholar 

  • 95.

    Pseudaletia unipuncta Bullangpoti, V., Wajnberg, E., Audant, P. & Feyereisen, R. Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescent leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest. Manag. Sci. 68(9), 1255–1264 (2012)

  • 96.

    Mvumi, C. & Maunga, P. R. Efficacy of lantana (Lantana camara) extract application against aphids (Brevicoryne brassicae) in rape (Brassica napus) over varied periods of time. Afr. J. Biotechnol. 17(8), 249–254 (2018).

    CAS 
    Article 

    Google Scholar 

  • 97.

    Kumar, R., Sharma, K. C. & Kumar, D. Studies on ovicidal effects of some plant extracts against the diamondback moth, Plutella xylostella (L.) infesting cauliflower crop. Biol. Forum. Int. J. (2009). (Vol. 1, No. 1, 47–50).

  • 98.

    Akhtar, Y., Yeoung, Y. R. & Isman, M. B. Comparative bioactivity of selected extracts from Meliaceae and some commercial botanical insecticides against two noctuid caterpillars Trichoplusia ni and. Phytochem. Rev. 7, 77–88 (2008).

    CAS 
    Article 

    Google Scholar 

  • 99.

    Akhtar, Y. & Isman, M. B. Comparative growth inhibitory and antifeedant effects of plant extracts and pure allelochemicals on four phytophagous insect species. J. App. Entomol. 128(1), 32–38 (2004).

    CAS 
    Article 

    Google Scholar 

  • 100.

    Bandeira, G. N. et al. Insecticidal activity of Muntingia calabura extracts against larvae and pupae of diamondback, Plutella xylostella (Lepidoptera, Plutellidae). J. King Saud Univ. Sci. 25(1), 83–89 (2013).

    Article 

    Google Scholar 

  • 101.

    Nasr, M., Sendi, J. J., Moharramipour, S. & Zibaee, A. Evaluation of Origanum vulgare L. essential oil as a source of toxicant and an inhibitor of physiological parameters in diamondback moth, Plutella xylustella L. (Lepidoptera: Pyralidae). J. Saudi Soc. Agric. Sci. 16(2), 184–190 (2017).

    Google Scholar 

  • 102.

    Shafiei, F., Ahmadi, K. & Asadi, M. Evaluation of systemic effects of four plant extracts compared with two systemic pesticides, acetamiprid and pirimicarb through leaf spraying against Brevicoryne brassicae L. (Hemiptera: Aphididae). J. Vector Ecol. 30, 284–288 (2018).

    Google Scholar 

  • 103.

    Xu, X. R., Jiang, H. Y., Zhang, Y. N. & Feng, P. Z. Bioactivity of Pharbitis purpurea extracts against Plutella xylostella. Pesticides-Shenyang- 45(2), 125 (2006).

    CAS 

    Google Scholar 

  • 104.

    Kodjo, T. A. et al. Bio-insecticidal effects of plant extracts and oil emulsions of Ricinus communis L. (Malpighiales: Euphorbiaceae) on the diamondback, Plutella xylostella L. (Lepidoptera: Plutellidae) under laboratory and semi-field conditions. J. Appl. Biosci 43, 2899–2914 (2011).

    Google Scholar 

  • 105.

    Khorrami, F., Soleymanzade, A. & Forouzan, M. Toxicity of some medicinal plant extracts to Pieris brassicae and combined effects with Proteus® against Brevicoryne brassicaeJ. Phytopathol. Pest Manag. 50–55 (2017).

  • 106.

    Yankanchi, S. R. & Patil, S. R. Field efficacy of plant extracts on larval populations of Plutella xylostella L. and Helicoverpa armigera Hub. and their impact on cabbage infestation. J. Biopestic. 2(1), 32–36 (2009).

    CAS 

    Google Scholar 

  • 107.

    Ramanujam, B., Rangeshwaran, R., Sivakmar, G., Mohan, M. & Yandigeri, M. S. Management of insect pests by microorganisms. In Proc Indian Nat Sci Acad (Vol. 80) 2, 455–471 (2014).

  • 108.

    Singh, A., Bhardwaj, R. & Singh, I. K. Biocontrol Agents: Potential of Biopesticides for Integrated Pest Management. In Biofertilizers for Sustainable Agriculture and Environment 413–433 (Springer, Cham. 2019).

  • 109.

    Ghosh, S.K., Chaudhary, M. & Kumar P. Myco-Jaal: a novel formulation of Beauveria bassiana for managing diamondback moth (Plutella xylostella) in tropical and sub-tropical crucifer production systems. Proc. of the Sixth International Workshop on Management of the Diamondback Moth and Other Crucifer Insect Pests, AVRDC – The World Vegetable Center, Tainan, Taiwan. pp. 153–158 (2011) 92

  • 110.

    Srinivasan, R., Sevgan, S., Ekesi, S. & Tamò, M. Biopesticide based sustainable pest management for safer production of vegetable legumes and brassicas in Asia and Africa. Pest Manag. Sci. 75(9), 2446–2454 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 111.

    Singh, K. I., Debbarma, A. & Singh, H. R. Field efficacy of certain microbial insecticides against Plutella xylostella Linnaeus and Pieris brassicae Linnaeus under cabbage-crop-ecosystem of Manipur. J. Biol. Control. 29, 194–202 (2015).

    Article 

    Google Scholar 

  • 112.

    Lin, H. P., Yang, X. J., Gao, Y. B. & Li, S. G. Pathogenicity of several fungal species on Spodoptera litura Chin. J. Appl. Ecol. 18, 937–940 (2007).

    Google Scholar 

  • 113.

    Martin, P. A. W., Hirose, E. & Aldrich, J. R. Toxicity of Chromobacterium subtsugae to Southern stink bug (Heteroptera: Pentatomidae) and corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 100, 680–684 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 114.

    Rodriguez, M. G. et al. Impact of entomopathogenic nematode applications on diamond back moth population. Rev. Protec. Vegetal. 28, 158–160 (2013).

    Google Scholar 

  • 115.

    Abbas, W., Javed, N., Haq, I. U. & Ahmed, S. Pathogenicity of Entomopathogenic nematodes against cabbage butterfly (Pieris brassicae) Linnaeus (Lepidoptera: Pieridae) in laboratory conditions. Int. J. Trop. Insect Sci. 1–7 (2020).

  • 116.

    Huang, Z., Ali, S., Ren, S. & Wu, J. Effect of Isaria fumosoroseus on mortality and fecundity of Bemisia tabaci and Plutella xylostella. Insect Sci. 17, 140–148 (2010).

    Article 

    Google Scholar 

  • 117.

    Kunimi, Y. Current status and prospects on microbial control in Japan. J. Invertebr. Pathol. 95(3), 181–186 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 118.

    Mohan, S., Raman, R. & Gaur, H.S. Foliar application of Photorhabdus luminescens, symbiotic bacteria from entomopathogenic nematode H. indica, to kill cabbage butterfly Pieris brassicae. Curr. Sci. 84, 1397 (2003).

  • 119.

    Baur, M. E., Kaya, H. K., Tabashnik, B. E. & Chilcutt, C. F. Suppression of diamondback moth (Lepidoptera: Plutellidae) with an entomopathogenic nematode (Rhabditida: Steinernematidae) and Bacillus thuringiensis Berliner. J. Econ. Entomol. 91(5), 1089–1095 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 120.

    Sunanda, B. S., Jeyakumar, P. & Jacob, V. V. Bioefficacy of different formulations of entomopathogenic nematode Steinernema carpocapsae against Diamond back moth (Plutella xylostella) infesting Cabbage (Brassica oleracea var. capitata). J. Biopestic. 7, 210–215 (2014).

    CAS 

    Google Scholar 

  • 121.

    Razek, A. A. S. Pathogenic effects of Xenorhabdus nematophilus and Photorhabdus luminescens against pupae of the Diamondback moth Plutella xylostella. J. Pest Sci. 76, 108–111 (2003).

    Google Scholar 


  • Source: Ecology - nature.com

    Exploring the future of humanitarian technology

    Bayesian analysis of Enceladus’s plume data to assess methanogenesis