Koch, E. & McFall-Ngai, M. Model systems for the study of how symbiotic associations between animals and extracellular bacterial partners are established and maintained. Drug Discov. Today Dis. Models 28, 3–12 (2018).
Google Scholar
Lee, K. H. & Ruby, E. G. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60, 1565–1571 (1994).
Google Scholar
Kremer, N. et al. Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization. Cell Host Microbe 14, 183–194 (2013).
Google Scholar
Bongrand, C. & Ruby, E. G. Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME J. 13, 698–706 (2019).
Google Scholar
McFall-Ngai, M. J. The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu. Rev. Microbiol. 68, 177–194 (2014).
Google Scholar
Jones, B. W. & Nishiguchi, M. K. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144, 1151–1155 (2004).
Google Scholar
Graf, J. & Ruby, E. G. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl Acad. Sci. USA 95, 1818–1822 (1998).
Google Scholar
McFall-Ngai, M. J. & Ruby, E. G. Developmental biology in marine invertebrate symbioses. Curr. Opin. Microbiol. 3, 603–607 (2000).
Google Scholar
Moriano-Gutierrez, S. et al. The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol. 18, e3000934 (2020).
Google Scholar
Schwartzman, J. A. & Ruby, E. G. Stress as a normal cue in the symbiotic environment. Trends Microbiol. 24, 414–424 (2016).
Google Scholar
Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00567-y (2021).
Schwartzman, J. A. et al. The chemistry of negotiation: rhythmic, glycan-driven acidification in a symbiotic conversation. Proc. Natl Acad. Sci. USA 112, 566–571 (2015). In this study, the host’s delivery of chitin-derived N-acetylglucosamine is shown to develop 4 weeks after hatching, and this chitin is apparently delivered by haemocytes that lyse in the crypts only at night. A nocturnal acidification of the crypts results, and a model for how this outcome enhances bioluminescence is described.
Google Scholar
Heath-Heckman, E. A. et al. Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-vibrio symbiosis. mBio https://doi.org/10.1128/mBio.00167-13 (2013).
Google Scholar
Koropatnick, T. A. et al. Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1187 (2004).
Google Scholar
Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).
Google Scholar
Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).
Google Scholar
Ruby, E. G. Symbiotic conversations are revealed under genetic interrogation. Nat. Rev. Microbiol. 6, 752–762 (2008).
Google Scholar
Bongrand, C. & Ruby, E. G. The impact of Vibrio fischeri strain variation on host colonization. Curr. Opin. Microbiol. 50, 15–19 (2019).
Google Scholar
Colton, D. M. & Stabb, E. V. Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae. Curr. Genet. 62, 39–45 (2016).
Google Scholar
Mandel, M. J. & Dunn, A. K. Impact and Influence of the natural Vibrio-squid symbiosis in understanding bacterial-animal interactions. Front. Microbiol. 7, 1982 (2016).
Google Scholar
Aschtgen, M. S. et al. Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbiomes 5, 32 (2019).
Google Scholar
Stabb, E. V. & Visick, K. L. in The Prokaryotes (eds Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E. & Thompson, F.) 497–532 (Springer, 2013).
Nawroth, J. C. et al. Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome. Proc. Natl Acad. Sci. USA 114, 9510–9516 (2017). This work provides the first glimpse into the cilium-driven fluid mechanics that position V. fischeri cells to reach and settle in ‘quiet zones’ on the light organ surface, permitting a selective ‘recruitment’ of this microorganism from the planktonic environment.
Google Scholar
Altura, M. A. et al. The first engagement of partners in the Euprymna scolopes-Vibrio fischeri symbiosis is a two-step process initiated by a few environmental symbiont cells. Environ. Microbiol. 15, 2937–2950 (2013). Aggregations of only a few V. fischeri cells are observed to initiate normal host responses, and reveal that aggregation is a two-part process that begins with bacterial attachment to the cilia.
Google Scholar
Nyholm, S. V., Stabb, E. V., Ruby, E. G. & McFall-Ngai, M. J. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl Acad. Sci. USA 97, 10231–10235 (2000).
Google Scholar
Yip, E. S., Geszvain, K., DeLoney-Marino, C. R. & Visick, K. L. The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol. Microbiol. 62, 1586–1600 (2006).
Google Scholar
Koehler, S. et al. The model squid-vibrio symbiosis provides a window into the impact of strain- and species-level differences during the initial stages of symbiont engagement. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14392 (2018).
Google Scholar
Morris, A. R. & Visick, K. L. Control of biofilm formation and colonization in Vibrio fischeri: a role for partner switching? Environ. Microbiol. 12, 2051–2059 (2010).
Google Scholar
Norsworthy, A. N. & Visick, K. L. Gimme shelter: how Vibrio fischeri successfully navigates an animal’s multiple environments. Front. Microbiol. 4, 356 (2013).
Google Scholar
Shibata, S., Yip, E. S., Quirke, K. P., Ondrey, J. M. & Visick, K. L. Roles of the structural symbiosis polysaccharide (syp) genes in host colonization, biofilm formation, and polysaccharide biosynthesis in Vibrio fischeri. J. Bacteriol. 194, 6736–6747 (2012).
Google Scholar
Yip, E. S., Grublesky, B. T., Hussa, E. A. & Visick, K. L. A novel, conserved cluster of genes promotes symbiotic colonization and sigma-dependent biofilm formation by Vibrio fischeri. Mol. Microbiol. 57, 1485–1498 (2005).
Google Scholar
Bassis, C. M. & Visick, K. L. The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. J. Bacteriol. 192, 1269–1278 (2010).
Google Scholar
Chavez-Dozal, A., Hogan, D., Gorman, C., Quintanal-Villalonga, A. & Nishiguchi, M. K. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization. FEMS Microbiol. Ecol. 81, 562–573 (2012).
Google Scholar
Tischler, A. H., Lie, L., Thompson, C. M. & Visick, K. L. Discovery of calcium as a biofilm-promoting signal for Vibrio fischeri reveals new phenotypes and underlying regulatory complexity. J. Bacteriol. 200, e00016–e00018 (2018). This article expands our understanding of the regulatory controls and signals leading to biofilm formation by identifying calcium as a signal that induces a coordinate upregulation of Syp- and cellulose-dependent biofilm formation and revealing the sensor kinase HahK as a new biofilm regulator.
Google Scholar
Ziemba, C., Shabtai, Y., Piatkovsky, M. & Herzberg, M. Cellulose effects on morphology and elasticity of Vibrio fischeri biofilms. NPJ Biofilms Microbiomes 2, 1 (2016).
Google Scholar
Ray, V. A., Driks, A. & Visick, K. L. Identification of a novel matrix protein that promotes biofilm maturation in Vibrio fischeri. J. Bacteriol. 197, 518–528 (2015).
Google Scholar
Shibata, S. & Visick, K. L. Sensor kinase RscS induces the production of antigenically distinct outer membrane vesicles That depend on the symbiosis polysaccharide locus in Vibrio fischeri. J. Bacteriol. 194, 185–194 (2012).
Google Scholar
Hussa, E. A., Darnell, C. L. & Visick, K. L. RscS functions upstream of SypG to control the syp locus and biofilm formation in Vibrio fischeri. J. Bacteriol. 190, 4576–4583 (2008).
Google Scholar
Mandel, M. J., Wollenberg, M. S., Stabb, E. V., Visick, K. L. & Ruby, E. G. A single regulatory gene is sufficient to alter bacterial host range. Nature 458, 215–218 (2009).
Google Scholar
Ray, V. A., Eddy, J. L., Hussa, E. A., Misale, M. & Visick, K. L. The syp enhancer sequence plays a key role in transcriptional activation by the sigma54-dependent response regulator SypG and in biofilm formation and host colonization by Vibrio fischeri. J. Bacteriol. 195, 5402–5412 (2013).
Google Scholar
Visick, K. L. & Skoufos, L. M. Two-component sensor required for normal symbiotic colonization of Euprymna scolopes by Vibrio fischeri. J. Bacteriol. 183, 835–842 (2001).
Google Scholar
Norsworthy, A. N. & Visick, K. L. Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont. Mol. Microbiol. 96, 233–248 (2015).
Google Scholar
Thompson, C. M., Marsden, A. E., Tischler, A. H., Koo, J. & Visick, K. L. Vibrio fischeri biofilm formation prevented by a trio of regulators. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01257-18 (2018).
Google Scholar
Brooks, J. F. II & Mandel, M. J. The histidine kinase BinK Is a negative regulator of biofilm formation and squid colonization. J. Bacteriol. 198, 2596–2607 (2016).
Google Scholar
Pankey, M. S. et al. Host-selected mutations converging on a global regulator drive an adaptive leap by bacteria to symbiosis. eLife https://doi.org/10.7554/eLife.24414 (2017). Evolutionary pathways that can lead to symbiotic colonization are revealed in this elegant study that follows the serial passage of a non-colonizing strain through many E. scolopes juveniles, resulting in altered, symbiosis-competent strains.
Google Scholar
Morris, A. R., Darnell, C. L. & Visick, K. L. Inactivation of a novel response regulator is necessary for biofilm formation and host colonization by Vibrio fischeri. Mol. Microbiol. 82, 114–130 (2011).
Google Scholar
Morris, A. R. & Visick, K. L. The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded regulator SypA in Vibrio fischeri. Mol. Microbiol. 87, 509–525 (2013).
Google Scholar
Brooks, J. F. II et al. Global discovery of colonization determinants in the squid symbiont Vibrio fischeri. Proc. Natl Acad. Sci. USA 111, 17284–17289 (2014). This large-scale investigation of colonization factors provides important information on genetic requirements for symbiosis and provides a wealth of data for hypothesis generation that will foster many subsequent studies.
Google Scholar
Thompson, C. M. & Visick, K. L. Assessing the function of STAS domain protein SypA in Vibrio fischeri using a comparative analysis. Front. Microbiol. 6, 760 (2015).
Google Scholar
Rotman, E. R. et al. Natural strain variation reveals diverse biofilm regulation in squid-colonizing Vibrio fischeri. J. Bacteriol. https://doi.org/10.1128/JB.00033-19 (2019).
Google Scholar
Bongrand, C. et al. A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior. ISME J. 10, 2907–2917 (2016). This study of the genomes and behaviours of a collection of a number of squid symbionts propelled the field from the near-exclusive study of a single isolate, ES114, into new and exciting directions with the genomic sequencing of dominant strains that contain numerous additional genetic sequences and factors.
Google Scholar
Newell, P. D., Boyd, C. D., Sondermann, H. & O’Toole, G. A. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol. 9, e1000587 (2011).
Google Scholar
Christensen, D. G., Marsden, A. E., Hodge-Hanson, K., Essock-Burns, T. & Visick, K. L. LapG mediates biofilm dispersal in Vibrio fischeri by controlling maintenance of the VCBS-containing adhesin LapV. Mol. Microbiol. 114, 742–761 (2020). This article addresses a major long-standing question concerning the initiation of the light organ association; specifically, how do aggregated V. fischeri cells release themselves and migrate into host tissue? One factor may be an adhesin-cleaving protease, which is kept in check by a c-di-GMP-responsive protein, and can promote symbiont dispersal from biofilms.
Google Scholar
Fidopiastis, P. M. et al. Characterization of a Vibrio fischeri aminopeptidase and evidence for its influence on an early stage of squid colonization. J. Bacteriol. 194, 3995–4002 (2012).
Google Scholar
Davidson, S. K., Koropatnick, T. A., Kossmehl, R., Sycuro, L. & McFall-Ngai, M. J. No means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cellul. Microbiol. 6, 1139–1151 (2004).
Google Scholar
Wang, Y. et al. Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid-Vibrio symbiosis. Mol. Microbiol. 78, 903–915 (2010).
Google Scholar
Stabb, E. V. Should they stay or should they go? Nitric oxide and the clash of regulators governing Vibrio fischeri biofilm formation. Mol. Microbiol. 111, 1–5 (2019).
Google Scholar
Thompson, C. M., Tischler, A. H., Tarnowski, D. A., Mandel, M. J. & Visick, K. L. Nitric oxide inhibits biofilm formation by Vibrio fischeri via the nitric oxide sensor HnoX. Mol. Microbiol. 111, 187–203 (2019). This publication provides insight into the complex role in symbiosis of the squid-produced defence molecule NO by uncovering its ability to inhibit biofilm formation via the NO sensor HnoX, a finding that suggests that NO may influence the location or timing of biofilm formation and/or promote dispersal during symbiotic initiation.
Google Scholar
Singh, P., Brooks, J. F. II., Ray, V. A., Mandel, M. J. & Visick, K. L. CysK plays a role in Biofilm formation and colonization by Vibrio fischeri. Appl. Environ. Microbiol. 81, 5223–5234 (2015).
Google Scholar
Raina, J. B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).
Google Scholar
Brennan, C. A., DeLoney-Marino, C. R. & Mandel, M. J. Chemoreceptor VfcA mediates amino acid chemotaxis in Vibrio fischeri. Appl. Environ. Microbiol. 79, 1889–1896 (2013).
Google Scholar
Graf, J., Dunlap, P. V. & Ruby, E. G. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176, 6986–6991 (1994).
Google Scholar
Millikan, D. S. & Ruby, E. G. FlrA, a sigma54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization. J. Bacteriol. 185, 3547–3557 (2003).
Google Scholar
Millikan, D. S. & Ruby, E. G. Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J. Bacteriol. 186, 4315–4325 (2004).
Google Scholar
Wolfe, A. J., Millikan, D. S., Campbell, J. M. & Visick, K. L. Vibrio fischeri sigma54 controls motility, biofilm formation, luminescence, and colonization. Appl. Environ. Microbiol. 70, 2520–2524 (2004).
Google Scholar
O’Shea, T. M. et al. Magnesium promotes flagellation of Vibrio fischeri. J. Bacteriol. 187, 2058–2065 (2005).
Google Scholar
Ruby, E. G. & Asato, L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159, 160–167 (1993).
Google Scholar
Beeby, M. et al. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc. Natl Acad. Sci. USA 113, E1917–E1926 (2016).
Google Scholar
Deloney-Marino, C. R. & Visick, K. L. Role for cheR of Vibrio fischeri in the Vibrio-squid symbiosis. Can. J. Microbiol. 58, 29–38 (2012).
Google Scholar
Ruby, E. G. et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl Acad. Sci. USA 102, 3004–3009 (2005).
Google Scholar
Nikolakakis, K., Monfils, K., Moriano-Gutierrez, S., Brennan, C. A. & Ruby, E. G. Characterization of the Vibrio fischeri fatty acid chemoreceptors, VfcB and VfcB2. Appl. Environ. Microbiol. 82, 696–704 (2015).
Google Scholar
Mandel, M. J. et al. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. Appl. Environ. Microbiol. 78, 4620–4626 (2012). While it was long-expected that V. fischeri might sense and be attracted to squid-produced molecules to facilitate directed migration into the light organ crypts, this work is the first to identify squid-produced molecules, chitin oligosaccharides, that function as a chemotactic signal promoting colonization.
Google Scholar
Bennett, B. D., Essock-Burns, T. & Ruby, E. G. HbtR, a heterofunctional homolog of the virulence regulator TcpP, facilitates the transition between symbiotic and planktonic lifestyles in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.01624-20 (2020). Comparisons of V. fischeri with the related pathogen Vibrio cholerae reveal that a regulator conserved among Vibrio spp. plays very different roles in the interactions of these two microorganisms with their respective hosts.
Google Scholar
Brennan, C. A. et al. A model symbiosis reveals a role for sheathed-flagellum rotation in the release of immunogenic lipopolysaccharide. eLife 3, e01579 (2014). A surprising role for flagellar rotation in the release of lipopolysaccharide molecules that promote squid development is revealed in this work, providing a novel function for the flagellar sheath.
Google Scholar
Stabb, E. V. & Millikan, D. S. in Defensive Mutualism in Microbial Symbiosis Vol. 27 (eds White, J. F. & Torres, M. S.) 85–98 (CRC Press, 2009).
Bose, J. L., Rosenberg, C. S. & Stabb, E. V. Effects of luxCDABEG induction in Vibrio fischeri: enhancement of symbiotic colonization and conditional attenuation of growth in culture. Arch. Microbiol. 190, 169–183 (2008).
Google Scholar
Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000).
Google Scholar
Verma, S. C. & Miyashiro, T. Niche-specific impact of a symbiotic function on the persistence of microbial symbionts within a natural host. Appl. Environ. Microbiol. 82, 5990–5996 (2016).
Google Scholar
Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L. & Stabb, E. V. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl. Environ. Microbiol. 72, 802–810 (2006).
Google Scholar
Essock-Burns, T., Bongrand, C., Goldman, W. E., Ruby, E. G. & McFall-Ngai, M. J. Interactions of symbiotic partners drive the development of a complex biogeography in the squid-vibrio symbiosis. mBio 11, e00853-20 (2020).
Google Scholar
Sycuro, L. K., Ruby, E. G. & McFall-Ngai, M. Confocal microscopy of the light organ crypts in juvenile Euprymna scolopes reveals their morphological complexity and dynamic function in symbiosis. J. Morphol. 267, 555–568 (2006).
Google Scholar
Koch, E. J., Miyashiro, T., McFall-Ngai, M. J. & Ruby, E. G. Features governing symbiont persistence in the squid-vibrio association. Mol. Ecol. 23, 1624–1634 (2014).
Google Scholar
Wollenberg, M. S., Preheim, S. P., Polz, M. F. & Ruby, E. G. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion. Environ. Microbiol. 14, 655–668 (2012).
Google Scholar
Chun, C. K. et al. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc. Natl Acad. Sci. USA 105, 11323–11328 (2008).
Google Scholar
McFall-Ngai, M., Heath-Heckman, E. A., Gillette, A. A., Peyer, S. M. & Harvie, E. A. The secret languages of coevolved symbioses: insights from the Euprymna scolopes-Vibrio fischeri symbiosis. Semin. Immunol. 24, 3–8 (2012).
Google Scholar
Moriano-Gutierrez, S. et al. Critical symbiont signals drive both local and systemic changes in diel and developmental host gene expression. Proc. Natl Acad. Sci. USA 116, 7990–7999 (2019).
Google Scholar
Verma, S. C. & Miyashiro, T. Quorum sensing in the squid-Vibrio symbiosis. Int. J. Mol. Sci. 14, 16386–16401 (2013).
Google Scholar
Stabb, E. V., Schaefer, A., Bose, J. L. & Ruby, E. G. in Chemical Communication Among Bacteria (eds Winans, S. C. & Bassler, B. L.) 233–250 (ASM Press, 2008).
Lupp, C. & Ruby, E. G. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacteriol. 187, 3620–3629 (2005).
Google Scholar
Kimbrough, J. H. & Stabb, E. V. Comparative analysis reveals regulatory motifs at the ainS/ainR pheromone-signaling locus of Vibrio fischeri. Sci. Rep. 7, 11734 (2017).
Google Scholar
Kimbrough, J. H. & Stabb, E. V. Substrate specificity and function of the pheromone receptor AinR in Vibrio fischeri ES114. J. Bacteriol. 195, 5223–5232 (2013).
Google Scholar
Studer, S. V., Mandel, M. J. & Ruby, E. G. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J. Bacteriol. 190, 5915–5923 (2008).
Google Scholar
Cao, X. et al. The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.00285-11 (2012).
Google Scholar
Studer, S. V. et al. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability. Environ. Microbiol. 16, 2623–2634 (2014).
Google Scholar
Boettcher, K. J. & Ruby, E. G. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J. Bacteriol. 172, 3701–3706 (1990).
Google Scholar
Septer, A. N. & Stabb, E. V. Coordination of the arc regulatory system and pheromone-mediated positive feedback in controlling the Vibrio fischeri lux operon. PLoS ONE 7, e49590 (2012).
Google Scholar
Stabb, E. V. Could positive feedback enable bacterial pheromone signaling to coordinate behaviors in response to heterogeneous environmental cues? mBio https://doi.org/10.1128/mBio.00098-18 (2018).
Google Scholar
Bose, J. L. et al. Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA. Mol. Microbiol. 65, 538–553 (2007).
Google Scholar
Lyell, N. L. et al. Cyclic AMP receptor protein regulates pheromone-mediated bioluminescence at multiple levels in Vibrio fischeri ES114. J. Bacteriol. 195, 5051–5063 (2013).
Google Scholar
Lyell, N. L., Dunn, A. K., Bose, J. L. & Stabb, E. V. Bright mutants of Vibrio fischeri ES114 reveal conditions and regulators that control bioluminescence and expression of the lux operon. J. Bacteriol. 192, 5103–5114 (2010).
Google Scholar
Septer, A. N., Lyell, N. L. & Stabb, E. V. The iron-dependent regulator fur controls pheromone signaling systems and luminescence in the squid symbiont Vibrio fischeri ES114. Appl. Environ. Microbiol. 79, 1826–1834 (2013).
Google Scholar
Stoudenmire, J. L. et al. An iterative, synthetic approach to engineer a high-performance PhoB-specific reporter. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00603-18 (2018). This study not only provides a road map for synthetic promoter engineering in V. fischeri but also uncovers evidence for possible microenvironments present within different crypts of the E. scolopes light organ.
Google Scholar
Bose, J. L. et al. Contribution of rapid evolution of the luxR-luxI intergenic region to the diverse bioluminescence outputs of Vibrio fischeri strains isolated from different environments. Appl. Environ. Microbiol. 77, 2445–2457 (2011).
Google Scholar
Dunn, A. K. Vibrio fischeri metabolism: symbiosis and beyond. Adv. Microb. Physiol. 61, 37–68 (2012).
Google Scholar
Schwartzman, J. A. & Ruby, E. G. A conserved chemical dialog of mutualism: lessons from squid and vibrio. Microbes Infect. 18, 1–10 (2016).
Google Scholar
Pan, S. et al. Model-enabled gene search (MEGS) allows fast and direct discovery of enzymatic and transport gene functions in the marine bacterium Vibrio fischeri. J. Biol. Chem. 292, 10250–10261 (2017).
Google Scholar
Thompson, L. R. et al. Transcriptional characterization of Vibrio fischeri during colonization of juvenile Euprymna scolopes. Environ. Microbiol. 19, 1845–1856 (2017).
Google Scholar
Wier, A. M. et al. Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis. Proc. Natl Acad. Sci. USA 107, 2259–2264 (2010). In the first dual transcriptional study of an animal host and its symbionts, gene expression in both partners is shown to be regulated over a day–night cycle, revealing a daily remodelling of the crypt epithelial cells and a night-time provision of chitin to the symbionts.
Google Scholar
Sun, Y., Verma, S. C., Bogale, H. & Miyashiro, T. NagC represses N-acetyl-glucosamine utilization genes in Vibrio fischeri within the light organ of Euprymna scolopes. Front. Microbiol. 6, 741 (2015).
Google Scholar
Wasilko, N. P. et al. Sulfur availability for Vibrio fischeri growth during symbiosis establishment depends on biogeography within the squid light organ. Mol. Microbiol. 111, 621–636 (2019). This study sheds light on both the nutritional adaptability of V. fischeri and the complex biogeography of the light organ by demonstrating that this symbiont uses different sulfur sources within different regions of the light organ.
Google Scholar
Septer, A. N. et al. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system. Mol. Microbiol. 95, 283–296 (2015).
Google Scholar
Lyell, N. L. & Stabb, E. V. Symbiotic characterization of Vibrio fischeri ES114 mutants that display enhanced luminescence in culture. Appl. Environ. Microbiol. 79, 2480–2483 (2013).
Google Scholar
Lyell, N. L. et al. An expanded transposon mutant library reveals that Vibrio fischeri delta-aminolevulinate auxotrophs can colonize Euprymna scolopes. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02470-16 (2017).
Google Scholar
Colton, D. M., Stoudenmire, J. L. & Stabb, E. V. Growth on glucose decreases cAMP-CRP activity while paradoxically increasing intracellular cAMP in the light-organ symbiont Vibrio fischeri. Mol. Microbiol. 97, 1114–1127 (2015).
Google Scholar
Miyashiro, T. et al. The N-acetyl-D-glucosamine repressor NagC of Vibrio fischeri facilitates colonization of Euprymna scolopes. Mol. Microbiol. 82, 894–903 (2011).
Google Scholar
Adin, D. M., Visick, K. L. & Stabb, E. V. Identification of a cellobiose utilization gene cluster with cryptic beta-galactosidase activity in Vibrio fischeri. Appl. Environ. Microbiol. 74, 4059–4069 (2008).
Google Scholar
Pan, M., Schwartzman, J. A., Dunn, A. K., Lu, Z. & Ruby, E. G. A single host-derived glycan impacts key regulatory nodes of symbiont metabolism in a coevolved mutualism. mBio 6, e00811 (2015).
Google Scholar
Boettcher, K. J., McFall-Ngai, M. J. & Ruby, E. G. Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J. Comp. Physiol. 179, 65–73 (1996).
Google Scholar
Kremer, N. et al. The dual nature of haemocyanin in the establishment and persistence of the squid-vibrio symbiosis. Proc. Biol. Sci. 281, 20140504 (2014).
Google Scholar
Stabb, E. V. Shedding light on the bioluminescence “paradox”. ASM News 71, 223–229 (2005).
Septer, A. N., Bose, J. L., Dunn, A. K. & Stabb, E. V. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri. FEMS Microbiol. Lett. 306, 72–81 (2010).
Google Scholar
Dunn, A. K. Alternative oxidase activity reduces stress in Vibrio fischeri cells exposed to nitric oxide. J. Bacteriol. https://doi.org/10.1128/JB.00797-17 (2018).
Google Scholar
Dunn, A. K. & Stabb, E. V. Genetic analysis of trimethylamine N-oxide reductases in the light organ symbiont Vibrio fischeri ES114. J. Bacteriol. 190, 5814–5823 (2008).
Google Scholar
Septer, A. N., Wang, Y., Ruby, E. G., Stabb, E. V. & Dunn, A. K. The haem-uptake gene cluster in Vibrio fischeri is regulated by Fur and contributes to symbiotic colonization. Environ. Microbiol. 13, 2855–2864 (2011).
Google Scholar
Graf, J. & Ruby, E. G. Novel effects of a transposon insertion in the Vibrio fischeri glnD gene: defects in iron uptake and symbiotic persistence in addition to nitrogen utilization. Mol. Microbiol. 37, 168–179 (2000).
Google Scholar
Eickhoff, M. J. & Bassler, B. L. Vibrio fischeri siderophore production drives competitive exclusion during dual-species growth. Mol. Microbiol. 114, 244–261 (2020).
Google Scholar
Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 e135 (2018).
Google Scholar
Zheng, H. et al. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc. Natl Acad. Sci. USA 116, 25909–25916 (2019).
Google Scholar
Aschtgen, M. S. et al. Rotation of Vibrio fischeri flagella produces outer membrane vesicles that induce host development. J. Bacteriol. 198, 2156–2165 (2016).
Google Scholar
Aschtgen, M. S., Wetzel, K., Goldman, W., McFall-Ngai, M. & Ruby, E. Vibrio fischeri-derived outer membrane vesicles trigger host development. Cell. Microbiol. 18, 488–499 (2016).
Google Scholar
Lynch, J. B. et al. Ambient pH alters the protein content of outer membrane vesicles, driving host development in a beneficial symbiosis. J. Bacteriol. https://doi.org/10.1128/JB.00319-19 (2019).
Google Scholar
Franzenburg, S. et al. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc. Natl Acad. Sci. USA 110, E3730–E3738 (2013).
Google Scholar
Chen, F. et al. Bactericidal permeability-increasing proteins shape host-microbe interactions. mBio 8, e00040-17 (2017).
Google Scholar
Heath-Heckman, E. A. et al. Shaping the microenvironment: evidence for the influence of a host galaxin on symbiont acquisition and maintenance in the squid-Vibrio symbiosis. Environ. Microbiol. 16, 3669–3682 (2014).
Google Scholar
Wang, Y. et al. H-NOX-mediated nitric oxide sensing modulates symbiotic colonization by Vibrio fischeri. Proc. Natl Acad. Sci. USA 107, 8375–8380 (2010).
Google Scholar
Schwartzman, J. A. et al. Acidic pH promotes lipopolysaccharide modification and alters colonization in a bacteria-animal mutualism. Mol. Microbiol. 112, 1326–1338 (2019).
Google Scholar
Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).
Google Scholar
Murfin, K. E. et al. Xenorhabdus bovienii strain diversity impacts coevolution and symbiotic maintenance with Steinernema spp. nematode hosts. mBio 6, e00076 (2015).
Google Scholar
Wollenberg, M. S. & Ruby, E. G. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from two Oahu (Hawaii) populations. Appl. Environ. Microbiol. 75, 193–202 (2009). This is the first comparative genome-level study of light organ symbionts both between and within adult squid, suggesting that on average each crypt of an organ is colonized by one or two V. fischeri cells, potentially creating crypt-separated, clonal lineages within a polyclonal organ.
Google Scholar
Tomich, M., Planet, P. J. & Figurski, D. H. The tad locus: postcards from the widespread colonization island. Nat. Rev. Microbiol. 5, 363–375 (2007).
Google Scholar
Gyllborg, M. C., Sahl, J. W., Cronin, D. C. III., Rasko, D. A. & Mandel, M. J. Draft genome sequence of Vibrio fischeri SR5, a strain isolated from the light organ of the Mediterranean squid Sepiola robusta. J. Bacteriol. 194, 1639 (2012).
Google Scholar
Bongrand, C. et al. Using colonization assays and comparative genomics to discover symbiosis behaviors and factors in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.03407-19 (2020).
Google Scholar
Coryell, R. L. et al. Phylogeographic patterns in the Philippine archipelago influence symbiont diversity in the bobtail squid-Vibrio mutualism. Ecol. Evol. 8, 7421–7435 (2018).
Google Scholar
Soto, W., Rivera, F. M. & Nishiguchi, M. K. Ecological diversification of Vibrio fischeri serially passaged for 500 generations in novel squid host Euprymna tasmanica. Microb. Ecol. 67, 700–721 (2014).
Google Scholar
Soto, W., Travisano, M., Tolleson, A. R. & Nishiguchi, M. K. Symbiont evolution during the free-living phase can improve host colonization. Microbiology 165, 174–187 (2019).
Google Scholar
Fidopiastis, P. M., von Boletzky, S. & Ruby, E. G. A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J. Bacteriol. 180, 59–64 (1998).
Google Scholar
Dillon, M. M., Sung, W., Lynch, M. & Cooper, V. S. Periodic variation of mutation rates in bacterial genomes associated with replication timing. mBio https://doi.org/10.1128/mBio.01371-18 (2018).
Google Scholar
Dillon, M. M., Sung, W., Sebra, R., Lynch, M. & Cooper, V. S. Genome-wide biases in the rate and molecular spectrum of spontaneous mutations in Vibrio cholerae and Vibrio fischeri. Mol. Biol. Evol. 34, 93–109 (2017).
Google Scholar
Wollenberg, M. S. & Ruby, E. G. Phylogeny and fitness of Vibrio fischeri from the light organs of Euprymna scolopes in two Oahu, Hawaii populations. ISME J. 6, 352–362 (2012).
Google Scholar
Koch, E. J. et al. The cytokine MIF controls daily rhythms of symbiont nutrition in an animal-bacterial association. Proc. Natl Acad. Sci. USA 117, 27578–27586 (2020).
Google Scholar
Sun, Y. et al. Intraspecific competition impacts Vibrio fischeri strain diversity during initial colonization of the squid light organ. Appl. Environ. Microbiol. 82, 3082–3091 (2016).
Google Scholar
Speare, L. et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc. Natl Acad. Sci. USA 115, E8528–E8537 (2018). The finding that V. fischeri engages in biological ‘warfare’ to become the sole colonizer of a given crypt has provided new insight into the dynamics and processes controlling light organ population structure and strain competition in nature.
Google Scholar
Speare, L., Smith, S., Salvato, F., Kleiner, M. & Septer, A. N. Environmental viscosity modulates interbacterial killing during habitat transition. mBio https://doi.org/10.1128/mBio.03060-19 (2020).
Google Scholar
Guckes, K. R. et al. Incompatibility of Vibrio fischeri strains during symbiosis establishment depends on two functionally redundant hcp genes. J. Bacteriol. https://doi.org/10.1128/JB.00221-19 (2019).
Google Scholar
Guckes, K. R., Cecere, A. G., Williams, A. L., McNeil, A. E. & Miyashiro, T. The bacterial enhancer binding protein VasH promotes expression of a Type VI secretion system in Vibrio fischeri during symbiosis. J. Bacteriol. https://doi.org/10.1128/JB.00777-19 (2020).
Google Scholar
Bultman, K. M., Cecere, A. G., Miyashiro, T., Septer, A. N. & Mandel, M. J. Draft genome sequences of type VI secretion system-encoding Vibrio fischeri strains FQ-A001 and ES401. Microbiol. Resour. Announc. https://doi.org/10.1128/MRA.00385-19 (2019).
Google Scholar
Doino, J. A. & McFall-Ngai, M. J. A transient exposure to symbiosis-competent bacteria induces light organ morphogenesis in the host squid. Biol. Bull. 189, 347–355 (1995).
Google Scholar
Dunn, A. K., Martin, M. O. & Stabb, E. V. Characterization of pES213, a small mobilizable plasmid from Vibrio fischeri. Plasmid 54, 114–134 (2005).
Google Scholar
Lyell, N. L., Dunn, A. K., Bose, J. L., Vescovi, S. L. & Stabb, E. V. Effective mutagenesis of Vibrio fischeri by using hyperactive mini-Tn5 derivatives. Appl. Environ. Microbiol. 74, 7059–7063 (2008).
Google Scholar
Stoudenmire, J. L., Black, M., Fidopiastis, P. M. & Stabb, E. V. Mutagenesis of Vibrio fischeri and other marine bacteria using hyperactive mini-Tn5 derivatives. Methods Mol. Biol. 2016, 87–104 (2019).
Google Scholar
Pollack-Berti, A., Wollenberg, M. S. & Ruby, E. G. Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ. Microbiol. 12, 2302–2311 (2010).
Google Scholar
Visick, K. L., Hodge-Hanson, K. M., Tischler, A. H., Bennett, A. K. & Mastrodomenico, V. Tools for rapid genetic engineering of Vibrio fischeri. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00850-18 (2018).
Google Scholar
Burgos, H. L. et al. Multiplexed competition in a synthetic squid light organ microbiome using barcode-tagged gene deletions. mSystems 5, e00846-20 (2020).
Google Scholar
Brooks, J. F. II, Gyllborg, M. C., Kocher, A. A., Markey, L. E. & Mandel, M. J. TfoX-based genetic mapping identifies Vibrio fischeri strain-level differences and reveals a common lineage of laboratory strains. J. Bacteriol. 197, 1065–1074 (2015).
Google Scholar
Califano, G. et al. Draft genome sequence of Aliivibrio fischeri strain 5LC, a bacterium retrieved from gilthead seabream (Sparus aurata) larvae reared in aquaculture. Genome Announc. 3, e00593-15 (2015).
Google Scholar
Hehemann, J.-H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).
Google Scholar
Nikolakakis, K., Lehnert, E., McFall-Ngai, M. J. & Ruby, E. G. Use of hybridization chain reaction-fluorescent in situ hybridization to track gene expression by both partners during initiation of symbiosis. Appl. Environ. Microbiol. 81, 4728–4735 (2015).
Google Scholar
Source: Ecology - nature.com