in

A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host

  • 1.

    Koch, E. & McFall-Ngai, M. Model systems for the study of how symbiotic associations between animals and extracellular bacterial partners are established and maintained. Drug Discov. Today Dis. Models 28, 3–12 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 2.

    Lee, K. H. & Ruby, E. G. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60, 1565–1571 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Kremer, N. et al. Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization. Cell Host Microbe 14, 183–194 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Bongrand, C. & Ruby, E. G. Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME J. 13, 698–706 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    McFall-Ngai, M. J. The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu. Rev. Microbiol. 68, 177–194 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Jones, B. W. & Nishiguchi, M. K. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144, 1151–1155 (2004).

    Article 

    Google Scholar 

  • 7.

    Graf, J. & Ruby, E. G. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl Acad. Sci. USA 95, 1818–1822 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    McFall-Ngai, M. J. & Ruby, E. G. Developmental biology in marine invertebrate symbioses. Curr. Opin. Microbiol. 3, 603–607 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Moriano-Gutierrez, S. et al. The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol. 18, e3000934 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Schwartzman, J. A. & Ruby, E. G. Stress as a normal cue in the symbiotic environment. Trends Microbiol. 24, 414–424 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00567-y (2021).

  • 12.

    Schwartzman, J. A. et al. The chemistry of negotiation: rhythmic, glycan-driven acidification in a symbiotic conversation. Proc. Natl Acad. Sci. USA 112, 566–571 (2015). In this study, the host’s delivery of chitin-derived N-acetylglucosamine is shown to develop 4 weeks after hatching, and this chitin is apparently delivered by haemocytes that lyse in the crypts only at night. A nocturnal acidification of the crypts results, and a model for how this outcome enhances bioluminescence is described.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Heath-Heckman, E. A. et al. Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-vibrio symbiosis. mBio https://doi.org/10.1128/mBio.00167-13 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Koropatnick, T. A. et al. Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1187 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Ruby, E. G. Symbiotic conversations are revealed under genetic interrogation. Nat. Rev. Microbiol. 6, 752–762 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Bongrand, C. & Ruby, E. G. The impact of Vibrio fischeri strain variation on host colonization. Curr. Opin. Microbiol. 50, 15–19 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Colton, D. M. & Stabb, E. V. Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae. Curr. Genet. 62, 39–45 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Mandel, M. J. & Dunn, A. K. Impact and Influence of the natural Vibrio-squid symbiosis in understanding bacterial-animal interactions. Front. Microbiol. 7, 1982 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Aschtgen, M. S. et al. Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbiomes 5, 32 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Stabb, E. V. & Visick, K. L. in The Prokaryotes (eds Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E. & Thompson, F.) 497–532 (Springer, 2013).

  • 23.

    Nawroth, J. C. et al. Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome. Proc. Natl Acad. Sci. USA 114, 9510–9516 (2017). This work provides the first glimpse into the cilium-driven fluid mechanics that position V. fischeri cells to reach and settle in ‘quiet zones’ on the light organ surface, permitting a selective ‘recruitment’ of this microorganism from the planktonic environment.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Altura, M. A. et al. The first engagement of partners in the Euprymna scolopes-Vibrio fischeri symbiosis is a two-step process initiated by a few environmental symbiont cells. Environ. Microbiol. 15, 2937–2950 (2013). Aggregations of only a few V. fischeri cells are observed to initiate normal host responses, and reveal that aggregation is a two-part process that begins with bacterial attachment to the cilia.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Nyholm, S. V., Stabb, E. V., Ruby, E. G. & McFall-Ngai, M. J. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl Acad. Sci. USA 97, 10231–10235 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Yip, E. S., Geszvain, K., DeLoney-Marino, C. R. & Visick, K. L. The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol. Microbiol. 62, 1586–1600 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Koehler, S. et al. The model squid-vibrio symbiosis provides a window into the impact of strain- and species-level differences during the initial stages of symbiont engagement. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14392 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Morris, A. R. & Visick, K. L. Control of biofilm formation and colonization in Vibrio fischeri: a role for partner switching? Environ. Microbiol. 12, 2051–2059 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Norsworthy, A. N. & Visick, K. L. Gimme shelter: how Vibrio fischeri successfully navigates an animal’s multiple environments. Front. Microbiol. 4, 356 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Shibata, S., Yip, E. S., Quirke, K. P., Ondrey, J. M. & Visick, K. L. Roles of the structural symbiosis polysaccharide (syp) genes in host colonization, biofilm formation, and polysaccharide biosynthesis in Vibrio fischeri. J. Bacteriol. 194, 6736–6747 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Yip, E. S., Grublesky, B. T., Hussa, E. A. & Visick, K. L. A novel, conserved cluster of genes promotes symbiotic colonization and sigma-dependent biofilm formation by Vibrio fischeri. Mol. Microbiol. 57, 1485–1498 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Bassis, C. M. & Visick, K. L. The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. J. Bacteriol. 192, 1269–1278 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Chavez-Dozal, A., Hogan, D., Gorman, C., Quintanal-Villalonga, A. & Nishiguchi, M. K. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization. FEMS Microbiol. Ecol. 81, 562–573 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Tischler, A. H., Lie, L., Thompson, C. M. & Visick, K. L. Discovery of calcium as a biofilm-promoting signal for Vibrio fischeri reveals new phenotypes and underlying regulatory complexity. J. Bacteriol. 200, e00016–e00018 (2018). This article expands our understanding of the regulatory controls and signals leading to biofilm formation by identifying calcium as a signal that induces a coordinate upregulation of Syp- and cellulose-dependent biofilm formation and revealing the sensor kinase HahK as a new biofilm regulator.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Ziemba, C., Shabtai, Y., Piatkovsky, M. & Herzberg, M. Cellulose effects on morphology and elasticity of Vibrio fischeri biofilms. NPJ Biofilms Microbiomes 2, 1 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Ray, V. A., Driks, A. & Visick, K. L. Identification of a novel matrix protein that promotes biofilm maturation in Vibrio fischeri. J. Bacteriol. 197, 518–528 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Shibata, S. & Visick, K. L. Sensor kinase RscS induces the production of antigenically distinct outer membrane vesicles That depend on the symbiosis polysaccharide locus in Vibrio fischeri. J. Bacteriol. 194, 185–194 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Hussa, E. A., Darnell, C. L. & Visick, K. L. RscS functions upstream of SypG to control the syp locus and biofilm formation in Vibrio fischeri. J. Bacteriol. 190, 4576–4583 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Mandel, M. J., Wollenberg, M. S., Stabb, E. V., Visick, K. L. & Ruby, E. G. A single regulatory gene is sufficient to alter bacterial host range. Nature 458, 215–218 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Ray, V. A., Eddy, J. L., Hussa, E. A., Misale, M. & Visick, K. L. The syp enhancer sequence plays a key role in transcriptional activation by the sigma54-dependent response regulator SypG and in biofilm formation and host colonization by Vibrio fischeri. J. Bacteriol. 195, 5402–5412 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Visick, K. L. & Skoufos, L. M. Two-component sensor required for normal symbiotic colonization of Euprymna scolopes by Vibrio fischeri. J. Bacteriol. 183, 835–842 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Norsworthy, A. N. & Visick, K. L. Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont. Mol. Microbiol. 96, 233–248 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Thompson, C. M., Marsden, A. E., Tischler, A. H., Koo, J. & Visick, K. L. Vibrio fischeri biofilm formation prevented by a trio of regulators. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01257-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Brooks, J. F. II & Mandel, M. J. The histidine kinase BinK Is a negative regulator of biofilm formation and squid colonization. J. Bacteriol. 198, 2596–2607 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Pankey, M. S. et al. Host-selected mutations converging on a global regulator drive an adaptive leap by bacteria to symbiosis. eLife https://doi.org/10.7554/eLife.24414 (2017). Evolutionary pathways that can lead to symbiotic colonization are revealed in this elegant study that follows the serial passage of a non-colonizing strain through many E. scolopes juveniles, resulting in altered, symbiosis-competent strains.

    Article 

    Google Scholar 

  • 46.

    Morris, A. R., Darnell, C. L. & Visick, K. L. Inactivation of a novel response regulator is necessary for biofilm formation and host colonization by Vibrio fischeri. Mol. Microbiol. 82, 114–130 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Morris, A. R. & Visick, K. L. The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded regulator SypA in Vibrio fischeri. Mol. Microbiol. 87, 509–525 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Brooks, J. F. II et al. Global discovery of colonization determinants in the squid symbiont Vibrio fischeri. Proc. Natl Acad. Sci. USA 111, 17284–17289 (2014). This large-scale investigation of colonization factors provides important information on genetic requirements for symbiosis and provides a wealth of data for hypothesis generation that will foster many subsequent studies.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Thompson, C. M. & Visick, K. L. Assessing the function of STAS domain protein SypA in Vibrio fischeri using a comparative analysis. Front. Microbiol. 6, 760 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Rotman, E. R. et al. Natural strain variation reveals diverse biofilm regulation in squid-colonizing Vibrio fischeri. J. Bacteriol. https://doi.org/10.1128/JB.00033-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Bongrand, C. et al. A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior. ISME J. 10, 2907–2917 (2016). This study of the genomes and behaviours of a collection of a number of squid symbionts propelled the field from the near-exclusive study of a single isolate, ES114, into new and exciting directions with the genomic sequencing of dominant strains that contain numerous additional genetic sequences and factors.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Newell, P. D., Boyd, C. D., Sondermann, H. & O’Toole, G. A. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol. 9, e1000587 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Christensen, D. G., Marsden, A. E., Hodge-Hanson, K., Essock-Burns, T. & Visick, K. L. LapG mediates biofilm dispersal in Vibrio fischeri by controlling maintenance of the VCBS-containing adhesin LapV. Mol. Microbiol. 114, 742–761 (2020). This article addresses a major long-standing question concerning the initiation of the light organ association; specifically, how do aggregated V. fischeri cells release themselves and migrate into host tissue? One factor may be an adhesin-cleaving protease, which is kept in check by a c-di-GMP-responsive protein, and can promote symbiont dispersal from biofilms.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 54.

    Fidopiastis, P. M. et al. Characterization of a Vibrio fischeri aminopeptidase and evidence for its influence on an early stage of squid colonization. J. Bacteriol. 194, 3995–4002 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Davidson, S. K., Koropatnick, T. A., Kossmehl, R., Sycuro, L. & McFall-Ngai, M. J. No means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cellul. Microbiol. 6, 1139–1151 (2004).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Wang, Y. et al. Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid-Vibrio symbiosis. Mol. Microbiol. 78, 903–915 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Stabb, E. V. Should they stay or should they go? Nitric oxide and the clash of regulators governing Vibrio fischeri biofilm formation. Mol. Microbiol. 111, 1–5 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Thompson, C. M., Tischler, A. H., Tarnowski, D. A., Mandel, M. J. & Visick, K. L. Nitric oxide inhibits biofilm formation by Vibrio fischeri via the nitric oxide sensor HnoX. Mol. Microbiol. 111, 187–203 (2019). This publication provides insight into the complex role in symbiosis of the squid-produced defence molecule NO by uncovering its ability to inhibit biofilm formation via the NO sensor HnoX, a finding that suggests that NO may influence the location or timing of biofilm formation and/or promote dispersal during symbiotic initiation.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Singh, P., Brooks, J. F. II., Ray, V. A., Mandel, M. J. & Visick, K. L. CysK plays a role in Biofilm formation and colonization by Vibrio fischeri. Appl. Environ. Microbiol. 81, 5223–5234 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Raina, J. B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Brennan, C. A., DeLoney-Marino, C. R. & Mandel, M. J. Chemoreceptor VfcA mediates amino acid chemotaxis in Vibrio fischeri. Appl. Environ. Microbiol. 79, 1889–1896 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Graf, J., Dunlap, P. V. & Ruby, E. G. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176, 6986–6991 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Millikan, D. S. & Ruby, E. G. FlrA, a sigma54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization. J. Bacteriol. 185, 3547–3557 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Millikan, D. S. & Ruby, E. G. Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J. Bacteriol. 186, 4315–4325 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Wolfe, A. J., Millikan, D. S., Campbell, J. M. & Visick, K. L. Vibrio fischeri sigma54 controls motility, biofilm formation, luminescence, and colonization. Appl. Environ. Microbiol. 70, 2520–2524 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    O’Shea, T. M. et al. Magnesium promotes flagellation of Vibrio fischeri. J. Bacteriol. 187, 2058–2065 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 67.

    Ruby, E. G. & Asato, L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159, 160–167 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 68.

    Beeby, M. et al. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc. Natl Acad. Sci. USA 113, E1917–E1926 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 69.

    Deloney-Marino, C. R. & Visick, K. L. Role for cheR of Vibrio fischeri in the Vibrio-squid symbiosis. Can. J. Microbiol. 58, 29–38 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 70.

    Ruby, E. G. et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl Acad. Sci. USA 102, 3004–3009 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 71.

    Nikolakakis, K., Monfils, K., Moriano-Gutierrez, S., Brennan, C. A. & Ruby, E. G. Characterization of the Vibrio fischeri fatty acid chemoreceptors, VfcB and VfcB2. Appl. Environ. Microbiol. 82, 696–704 (2015).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 72.

    Mandel, M. J. et al. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. Appl. Environ. Microbiol. 78, 4620–4626 (2012). While it was long-expected that V. fischeri might sense and be attracted to squid-produced molecules to facilitate directed migration into the light organ crypts, this work is the first to identify squid-produced molecules, chitin oligosaccharides, that function as a chemotactic signal promoting colonization.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Bennett, B. D., Essock-Burns, T. & Ruby, E. G. HbtR, a heterofunctional homolog of the virulence regulator TcpP, facilitates the transition between symbiotic and planktonic lifestyles in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.01624-20 (2020). Comparisons of V. fischeri with the related pathogen Vibrio cholerae reveal that a regulator conserved among Vibrio spp. plays very different roles in the interactions of these two microorganisms with their respective hosts.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Brennan, C. A. et al. A model symbiosis reveals a role for sheathed-flagellum rotation in the release of immunogenic lipopolysaccharide. eLife 3, e01579 (2014). A surprising role for flagellar rotation in the release of lipopolysaccharide molecules that promote squid development is revealed in this work, providing a novel function for the flagellar sheath.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 75.

    Stabb, E. V. & Millikan, D. S. in Defensive Mutualism in Microbial Symbiosis Vol. 27 (eds White, J. F. & Torres, M. S.) 85–98 (CRC Press, 2009).

  • 76.

    Bose, J. L., Rosenberg, C. S. & Stabb, E. V. Effects of luxCDABEG induction in Vibrio fischeri: enhancement of symbiotic colonization and conditional attenuation of growth in culture. Arch. Microbiol. 190, 169–183 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Verma, S. C. & Miyashiro, T. Niche-specific impact of a symbiotic function on the persistence of microbial symbionts within a natural host. Appl. Environ. Microbiol. 82, 5990–5996 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L. & Stabb, E. V. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl. Environ. Microbiol. 72, 802–810 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Essock-Burns, T., Bongrand, C., Goldman, W. E., Ruby, E. G. & McFall-Ngai, M. J. Interactions of symbiotic partners drive the development of a complex biogeography in the squid-vibrio symbiosis. mBio 11, e00853-20 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Sycuro, L. K., Ruby, E. G. & McFall-Ngai, M. Confocal microscopy of the light organ crypts in juvenile Euprymna scolopes reveals their morphological complexity and dynamic function in symbiosis. J. Morphol. 267, 555–568 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 82.

    Koch, E. J., Miyashiro, T., McFall-Ngai, M. J. & Ruby, E. G. Features governing symbiont persistence in the squid-vibrio association. Mol. Ecol. 23, 1624–1634 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 83.

    Wollenberg, M. S., Preheim, S. P., Polz, M. F. & Ruby, E. G. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion. Environ. Microbiol. 14, 655–668 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Chun, C. K. et al. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc. Natl Acad. Sci. USA 105, 11323–11328 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 85.

    McFall-Ngai, M., Heath-Heckman, E. A., Gillette, A. A., Peyer, S. M. & Harvie, E. A. The secret languages of coevolved symbioses: insights from the Euprymna scolopes-Vibrio fischeri symbiosis. Semin. Immunol. 24, 3–8 (2012).

    PubMed 
    Article 

    Google Scholar 

  • 86.

    Moriano-Gutierrez, S. et al. Critical symbiont signals drive both local and systemic changes in diel and developmental host gene expression. Proc. Natl Acad. Sci. USA 116, 7990–7999 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 87.

    Verma, S. C. & Miyashiro, T. Quorum sensing in the squid-Vibrio symbiosis. Int. J. Mol. Sci. 14, 16386–16401 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 88.

    Stabb, E. V., Schaefer, A., Bose, J. L. & Ruby, E. G. in Chemical Communication Among Bacteria (eds Winans, S. C. & Bassler, B. L.) 233–250 (ASM Press, 2008).

  • 89.

    Lupp, C. & Ruby, E. G. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacteriol. 187, 3620–3629 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Kimbrough, J. H. & Stabb, E. V. Comparative analysis reveals regulatory motifs at the ainS/ainR pheromone-signaling locus of Vibrio fischeri. Sci. Rep. 7, 11734 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 91.

    Kimbrough, J. H. & Stabb, E. V. Substrate specificity and function of the pheromone receptor AinR in Vibrio fischeri ES114. J. Bacteriol. 195, 5223–5232 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 92.

    Studer, S. V., Mandel, M. J. & Ruby, E. G. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J. Bacteriol. 190, 5915–5923 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 93.

    Cao, X. et al. The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.00285-11 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 94.

    Studer, S. V. et al. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability. Environ. Microbiol. 16, 2623–2634 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 95.

    Boettcher, K. J. & Ruby, E. G. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J. Bacteriol. 172, 3701–3706 (1990).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Septer, A. N. & Stabb, E. V. Coordination of the arc regulatory system and pheromone-mediated positive feedback in controlling the Vibrio fischeri lux operon. PLoS ONE 7, e49590 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Stabb, E. V. Could positive feedback enable bacterial pheromone signaling to coordinate behaviors in response to heterogeneous environmental cues? mBio https://doi.org/10.1128/mBio.00098-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Bose, J. L. et al. Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA. Mol. Microbiol. 65, 538–553 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 99.

    Lyell, N. L. et al. Cyclic AMP receptor protein regulates pheromone-mediated bioluminescence at multiple levels in Vibrio fischeri ES114. J. Bacteriol. 195, 5051–5063 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    Lyell, N. L., Dunn, A. K., Bose, J. L. & Stabb, E. V. Bright mutants of Vibrio fischeri ES114 reveal conditions and regulators that control bioluminescence and expression of the lux operon. J. Bacteriol. 192, 5103–5114 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 101.

    Septer, A. N., Lyell, N. L. & Stabb, E. V. The iron-dependent regulator fur controls pheromone signaling systems and luminescence in the squid symbiont Vibrio fischeri ES114. Appl. Environ. Microbiol. 79, 1826–1834 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 102.

    Stoudenmire, J. L. et al. An iterative, synthetic approach to engineer a high-performance PhoB-specific reporter. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00603-18 (2018). This study not only provides a road map for synthetic promoter engineering in V. fischeri but also uncovers evidence for possible microenvironments present within different crypts of the E. scolopes light organ.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 103.

    Bose, J. L. et al. Contribution of rapid evolution of the luxR-luxI intergenic region to the diverse bioluminescence outputs of Vibrio fischeri strains isolated from different environments. Appl. Environ. Microbiol. 77, 2445–2457 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 104.

    Dunn, A. K. Vibrio fischeri metabolism: symbiosis and beyond. Adv. Microb. Physiol. 61, 37–68 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 105.

    Schwartzman, J. A. & Ruby, E. G. A conserved chemical dialog of mutualism: lessons from squid and vibrio. Microbes Infect. 18, 1–10 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 106.

    Pan, S. et al. Model-enabled gene search (MEGS) allows fast and direct discovery of enzymatic and transport gene functions in the marine bacterium Vibrio fischeri. J. Biol. Chem. 292, 10250–10261 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 107.

    Thompson, L. R. et al. Transcriptional characterization of Vibrio fischeri during colonization of juvenile Euprymna scolopes. Environ. Microbiol. 19, 1845–1856 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 108.

    Wier, A. M. et al. Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis. Proc. Natl Acad. Sci. USA 107, 2259–2264 (2010). In the first dual transcriptional study of an animal host and its symbionts, gene expression in both partners is shown to be regulated over a day–night cycle, revealing a daily remodelling of the crypt epithelial cells and a night-time provision of chitin to the symbionts.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 109.

    Sun, Y., Verma, S. C., Bogale, H. & Miyashiro, T. NagC represses N-acetyl-glucosamine utilization genes in Vibrio fischeri within the light organ of Euprymna scolopes. Front. Microbiol. 6, 741 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    Wasilko, N. P. et al. Sulfur availability for Vibrio fischeri growth during symbiosis establishment depends on biogeography within the squid light organ. Mol. Microbiol. 111, 621–636 (2019). This study sheds light on both the nutritional adaptability of V. fischeri and the complex biogeography of the light organ by demonstrating that this symbiont uses different sulfur sources within different regions of the light organ.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 111.

    Septer, A. N. et al. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system. Mol. Microbiol. 95, 283–296 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 112.

    Lyell, N. L. & Stabb, E. V. Symbiotic characterization of Vibrio fischeri ES114 mutants that display enhanced luminescence in culture. Appl. Environ. Microbiol. 79, 2480–2483 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 113.

    Lyell, N. L. et al. An expanded transposon mutant library reveals that Vibrio fischeri delta-aminolevulinate auxotrophs can colonize Euprymna scolopes. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02470-16 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    Colton, D. M., Stoudenmire, J. L. & Stabb, E. V. Growth on glucose decreases cAMP-CRP activity while paradoxically increasing intracellular cAMP in the light-organ symbiont Vibrio fischeri. Mol. Microbiol. 97, 1114–1127 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 115.

    Miyashiro, T. et al. The N-acetyl-D-glucosamine repressor NagC of Vibrio fischeri facilitates colonization of Euprymna scolopes. Mol. Microbiol. 82, 894–903 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 116.

    Adin, D. M., Visick, K. L. & Stabb, E. V. Identification of a cellobiose utilization gene cluster with cryptic beta-galactosidase activity in Vibrio fischeri. Appl. Environ. Microbiol. 74, 4059–4069 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 117.

    Pan, M., Schwartzman, J. A., Dunn, A. K., Lu, Z. & Ruby, E. G. A single host-derived glycan impacts key regulatory nodes of symbiont metabolism in a coevolved mutualism. mBio 6, e00811 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 118.

    Boettcher, K. J., McFall-Ngai, M. J. & Ruby, E. G. Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J. Comp. Physiol. 179, 65–73 (1996).

    Article 

    Google Scholar 

  • 119.

    Kremer, N. et al. The dual nature of haemocyanin in the establishment and persistence of the squid-vibrio symbiosis. Proc. Biol. Sci. 281, 20140504 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 120.

    Stabb, E. V. Shedding light on the bioluminescence “paradox”. ASM News 71, 223–229 (2005).

    Google Scholar 

  • 121.

    Septer, A. N., Bose, J. L., Dunn, A. K. & Stabb, E. V. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri. FEMS Microbiol. Lett. 306, 72–81 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 122.

    Dunn, A. K. Alternative oxidase activity reduces stress in Vibrio fischeri cells exposed to nitric oxide. J. Bacteriol. https://doi.org/10.1128/JB.00797-17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 123.

    Dunn, A. K. & Stabb, E. V. Genetic analysis of trimethylamine N-oxide reductases in the light organ symbiont Vibrio fischeri ES114. J. Bacteriol. 190, 5814–5823 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 124.

    Septer, A. N., Wang, Y., Ruby, E. G., Stabb, E. V. & Dunn, A. K. The haem-uptake gene cluster in Vibrio fischeri is regulated by Fur and contributes to symbiotic colonization. Environ. Microbiol. 13, 2855–2864 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 125.

    Graf, J. & Ruby, E. G. Novel effects of a transposon insertion in the Vibrio fischeri glnD gene: defects in iron uptake and symbiotic persistence in addition to nitrogen utilization. Mol. Microbiol. 37, 168–179 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 126.

    Eickhoff, M. J. & Bassler, B. L. Vibrio fischeri siderophore production drives competitive exclusion during dual-species growth. Mol. Microbiol. 114, 244–261 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 127.

    Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 e135 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 128.

    Zheng, H. et al. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc. Natl Acad. Sci. USA 116, 25909–25916 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 129.

    Aschtgen, M. S. et al. Rotation of Vibrio fischeri flagella produces outer membrane vesicles that induce host development. J. Bacteriol. 198, 2156–2165 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 130.

    Aschtgen, M. S., Wetzel, K., Goldman, W., McFall-Ngai, M. & Ruby, E. Vibrio fischeri-derived outer membrane vesicles trigger host development. Cell. Microbiol. 18, 488–499 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 131.

    Lynch, J. B. et al. Ambient pH alters the protein content of outer membrane vesicles, driving host development in a beneficial symbiosis. J. Bacteriol. https://doi.org/10.1128/JB.00319-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 132.

    Franzenburg, S. et al. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc. Natl Acad. Sci. USA 110, E3730–E3738 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 133.

    Chen, F. et al. Bactericidal permeability-increasing proteins shape host-microbe interactions. mBio 8, e00040-17 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 134.

    Heath-Heckman, E. A. et al. Shaping the microenvironment: evidence for the influence of a host galaxin on symbiont acquisition and maintenance in the squid-Vibrio symbiosis. Environ. Microbiol. 16, 3669–3682 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 135.

    Wang, Y. et al. H-NOX-mediated nitric oxide sensing modulates symbiotic colonization by Vibrio fischeri. Proc. Natl Acad. Sci. USA 107, 8375–8380 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 136.

    Schwartzman, J. A. et al. Acidic pH promotes lipopolysaccharide modification and alters colonization in a bacteria-animal mutualism. Mol. Microbiol. 112, 1326–1338 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 137.

    Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 138.

    Murfin, K. E. et al. Xenorhabdus bovienii strain diversity impacts coevolution and symbiotic maintenance with Steinernema spp. nematode hosts. mBio 6, e00076 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 139.

    Wollenberg, M. S. & Ruby, E. G. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from two Oahu (Hawaii) populations. Appl. Environ. Microbiol. 75, 193–202 (2009). This is the first comparative genome-level study of light organ symbionts both between and within adult squid, suggesting that on average each crypt of an organ is colonized by one or two V. fischeri cells, potentially creating crypt-separated, clonal lineages within a polyclonal organ.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 140.

    Tomich, M., Planet, P. J. & Figurski, D. H. The tad locus: postcards from the widespread colonization island. Nat. Rev. Microbiol. 5, 363–375 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 141.

    Gyllborg, M. C., Sahl, J. W., Cronin, D. C. III., Rasko, D. A. & Mandel, M. J. Draft genome sequence of Vibrio fischeri SR5, a strain isolated from the light organ of the Mediterranean squid Sepiola robusta. J. Bacteriol. 194, 1639 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 142.

    Bongrand, C. et al. Using colonization assays and comparative genomics to discover symbiosis behaviors and factors in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.03407-19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 143.

    Coryell, R. L. et al. Phylogeographic patterns in the Philippine archipelago influence symbiont diversity in the bobtail squid-Vibrio mutualism. Ecol. Evol. 8, 7421–7435 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 144.

    Soto, W., Rivera, F. M. & Nishiguchi, M. K. Ecological diversification of Vibrio fischeri serially passaged for 500 generations in novel squid host Euprymna tasmanica. Microb. Ecol. 67, 700–721 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 145.

    Soto, W., Travisano, M., Tolleson, A. R. & Nishiguchi, M. K. Symbiont evolution during the free-living phase can improve host colonization. Microbiology 165, 174–187 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 146.

    Fidopiastis, P. M., von Boletzky, S. & Ruby, E. G. A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J. Bacteriol. 180, 59–64 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 147.

    Dillon, M. M., Sung, W., Lynch, M. & Cooper, V. S. Periodic variation of mutation rates in bacterial genomes associated with replication timing. mBio https://doi.org/10.1128/mBio.01371-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 148.

    Dillon, M. M., Sung, W., Sebra, R., Lynch, M. & Cooper, V. S. Genome-wide biases in the rate and molecular spectrum of spontaneous mutations in Vibrio cholerae and Vibrio fischeri. Mol. Biol. Evol. 34, 93–109 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 149.

    Wollenberg, M. S. & Ruby, E. G. Phylogeny and fitness of Vibrio fischeri from the light organs of Euprymna scolopes in two Oahu, Hawaii populations. ISME J. 6, 352–362 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 150.

    Koch, E. J. et al. The cytokine MIF controls daily rhythms of symbiont nutrition in an animal-bacterial association. Proc. Natl Acad. Sci. USA 117, 27578–27586 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 151.

    Sun, Y. et al. Intraspecific competition impacts Vibrio fischeri strain diversity during initial colonization of the squid light organ. Appl. Environ. Microbiol. 82, 3082–3091 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 152.

    Speare, L. et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc. Natl Acad. Sci. USA 115, E8528–E8537 (2018). The finding that V. fischeri engages in biological ‘warfare’ to become the sole colonizer of a given crypt has provided new insight into the dynamics and processes controlling light organ population structure and strain competition in nature.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 153.

    Speare, L., Smith, S., Salvato, F., Kleiner, M. & Septer, A. N. Environmental viscosity modulates interbacterial killing during habitat transition. mBio https://doi.org/10.1128/mBio.03060-19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 154.

    Guckes, K. R. et al. Incompatibility of Vibrio fischeri strains during symbiosis establishment depends on two functionally redundant hcp genes. J. Bacteriol. https://doi.org/10.1128/JB.00221-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 155.

    Guckes, K. R., Cecere, A. G., Williams, A. L., McNeil, A. E. & Miyashiro, T. The bacterial enhancer binding protein VasH promotes expression of a Type VI secretion system in Vibrio fischeri during symbiosis. J. Bacteriol. https://doi.org/10.1128/JB.00777-19 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 156.

    Bultman, K. M., Cecere, A. G., Miyashiro, T., Septer, A. N. & Mandel, M. J. Draft genome sequences of type VI secretion system-encoding Vibrio fischeri strains FQ-A001 and ES401. Microbiol. Resour. Announc. https://doi.org/10.1128/MRA.00385-19 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 157.

    Doino, J. A. & McFall-Ngai, M. J. A transient exposure to symbiosis-competent bacteria induces light organ morphogenesis in the host squid. Biol. Bull. 189, 347–355 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 158.

    Dunn, A. K., Martin, M. O. & Stabb, E. V. Characterization of pES213, a small mobilizable plasmid from Vibrio fischeri. Plasmid 54, 114–134 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 159.

    Lyell, N. L., Dunn, A. K., Bose, J. L., Vescovi, S. L. & Stabb, E. V. Effective mutagenesis of Vibrio fischeri by using hyperactive mini-Tn5 derivatives. Appl. Environ. Microbiol. 74, 7059–7063 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 160.

    Stoudenmire, J. L., Black, M., Fidopiastis, P. M. & Stabb, E. V. Mutagenesis of Vibrio fischeri and other marine bacteria using hyperactive mini-Tn5 derivatives. Methods Mol. Biol. 2016, 87–104 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 161.

    Pollack-Berti, A., Wollenberg, M. S. & Ruby, E. G. Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ. Microbiol. 12, 2302–2311 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 162.

    Visick, K. L., Hodge-Hanson, K. M., Tischler, A. H., Bennett, A. K. & Mastrodomenico, V. Tools for rapid genetic engineering of Vibrio fischeri. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00850-18 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 163.

    Burgos, H. L. et al. Multiplexed competition in a synthetic squid light organ microbiome using barcode-tagged gene deletions. mSystems 5, e00846-20 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 164.

    Brooks, J. F. II, Gyllborg, M. C., Kocher, A. A., Markey, L. E. & Mandel, M. J. TfoX-based genetic mapping identifies Vibrio fischeri strain-level differences and reveals a common lineage of laboratory strains. J. Bacteriol. 197, 1065–1074 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 165.

    Califano, G. et al. Draft genome sequence of Aliivibrio fischeri strain 5LC, a bacterium retrieved from gilthead seabream (Sparus aurata) larvae reared in aquaculture. Genome Announc. 3, e00593-15 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 166.

    Hehemann, J.-H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 167.

    Nikolakakis, K., Lehnert, E., McFall-Ngai, M. J. & Ruby, E. G. Use of hybridization chain reaction-fluorescent in situ hybridization to track gene expression by both partners during initiation of symbiosis. Appl. Environ. Microbiol. 81, 4728–4735 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Exploring the future of humanitarian technology

    Bayesian analysis of Enceladus’s plume data to assess methanogenesis