Craik, D. J., Daly, N. L., Bond, T. & Waine, C. Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 294, 1327–1336 (1999).
Google Scholar
Gran, L. On the effect of a polypeptide isolated from “Kalata-Kalata” (Oldenlandia affinis DC) on the oestrogen dominated uterus. Acta Pharmacol. Toxicol. (Copenh) 33, 400–408 (1973).
Google Scholar
Schoepke, T., Hasan Agha, M. I., Kraft, R., Otto, A. & Hiller, K. Haemolytisch aktive Komponenten aus Viola tricolor L. und Viola arvensis murray. Sci. Pharm. 61, 145–153 (1993).
Google Scholar
Claeson, P., Göransson, U., Johansson, S., Luijendijk, T. & Bohlin, L. Fractionation protocol for the isolation of polypeptides from plant biomass. J. Nat. Prod. 61, 77–81 (1998).
Google Scholar
Göransson, U., Luijendijk, T., Johansson, S., Bohlin, L. & Claeson, P. Seven novel macrocyclic polypeptides from Viola arvensis. J. Nat. Prod. 62, 283–286 (1999).
Google Scholar
Poth, A. G. et al. Discovery of cyclotides in the Fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS Chem. Biol. 6, 345–355 (2011).
Google Scholar
Poth, A. G. et al. Cyclotides associate with leaf vasculature and are the products of a novel precursor in Petunia (Solanaceae). J. Biol. Chem. 287, 27033–27046 (2012).
Google Scholar
Burman, R. et al. Distribution of circular proteins in plants: Large-scale mapping of cyclotides in the Violaceae. Front. Plant Sci. 6, 20 (2015).
Google Scholar
Hernandez, J. F. et al. Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39, 5722–5730 (2000).
Google Scholar
Nguyen, G. K. T. et al. Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. J. Biol. Chem. 288, 3370–3380 (2013).
Google Scholar
Saether, O. et al. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34, 4147–4158 (1995).
Google Scholar
Ravipati, A. S. et al. Understanding the diversity and distribution of cyclotides from plants of varied genetic origin. J. Nat. Prod. 80, 1522–1530 (2017).
Google Scholar
Gruber, C. W. et al. Distribution and evolution of circular miniproteins in flowering plants. Plant Cell 20, 2471–2483 (2008).
Google Scholar
Simonsen, S. M. et al. A continent of plant defense peptide diversity: Cyclotides in Australian Hybanthus (Violaceae). Plant Cell 17, 3176–3189 (2005).
Google Scholar
Slazak, B., Jacobsson, E., Kuta, E. & Göransson, U. Exogenous plant hormones and cyclotide expression in Viola uliginosa (Violaceae). Phytochemistry 117, 527–536 (2015).
Google Scholar
Lindholm, P. et al. Cyclotides: A novel type of cytotoxic agents. Mol. Cancer Ther. 1, 365–369 (2002).
Google Scholar
Ovesen, R. G. et al. Biomedicine in the environment: Cyclotides constitute potent natural toxins in plants and soil bacteria. Environ. Toxicol. Chem. 30, 1190–1196 (2011).
Google Scholar
Pränting, M., Lööv, C., Burman, R., Göransson, U. & Andersson, D. I. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J. Antimicrob. Chemother. 65, 1964–1971 (2010).
Google Scholar
Tam, J. P., Lu, Y. A., Yang, J. L. & Chiu, K. W. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proc. Natl. Acad. Sci. USA 96, 8913–8918 (1999).
Google Scholar
Slazak, B. et al. How Does the sweet violet (Viola odorata L.) fight pathogens and pests—cyclotides as a comprehensive plant host defense system. Front. Plant Sci. 9, 20 (2018).
Google Scholar
Colgrave, M. L. et al. Anthelmintic activity of cyclotides: In vitro studies with canine and human hookworms. Acta Trop. 109, 163–166 (2009).
Google Scholar
Jennings, C., West, J., Waine, C., Craik, D. & Anderson, M. A. Biosynthesis and insecticidal properties of plant cyclotides: The cyclic knotted proteins from Oldenlandia affinis. Proc. Natl. Acad. Sci. USA. 98, 10614–10619 (2001).
Google Scholar
Gilding, E. K. et al. Gene coevolution and regulation lock cyclic plant defence peptides to their targets. New Phytol. 210, 717–730 (2016).
Google Scholar
Mylne, J. S., Wang, C. K., van der Weerden, N. L. & Craik, D. J. Cyclotides are a component of the innate defense of Oldenlandia affinis. Biopolymers 94, 635–646 (2010).
Google Scholar
Dörnenburg, H. Cyclotide synthesis and supply: From plant to bioprocess. Biopolymers 94, 602–610 (2010).
Google Scholar
Trabi, M. et al. Variations in cyclotide expression in Viola species. J. Nat. Prod. 67, 806–810 (2004).
Google Scholar
Lista de especies silvestres de Canarias (hongos, plantas y animales terrestres). (Consejería de Política Territorial y Medio Ambiente. Gobierno de Canarias., 2001).
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Google Scholar
Gómez, M. V. M., Esquivel, J. L. M., Díaz, J. R. D. & Izquierdo, M. S. Viola guaxarensis (Violaceae): A new Viola from Tenerife, Canary Islands, Spain. Willdenowia 50, 13–21 (2020).
Google Scholar
Rodríguez-Rodríguez, P., De Castro, A. G. F., Seguí, J., Traveset, A. & Sosa, P. A. Alpine species in dynamic insular ecosystems through time: Conservation genetics and niche shift estimates of the endemic and vulnerable Viola cheiranthifolia. Ann. Bot. 123, 505–519 (2019).
Google Scholar
Ireland, D. C., Colgrave, M. L. & Craik, D. J. A novel suite of cyclotides from Viola odorata: Sequence variation and the implications for structure, function and stability. Biochem. J. 400, 1–12 (2006).
Google Scholar
Burman, R., Gunasekera, S., Strömstedt, A. A. & Göransson, U. Chemistry and biology of cyclotides: Circular plant peptides outside the box. J. Nat. Prod. 77, 724–736 (2014).
Google Scholar
Trabi, M. & Craik, D. J. Tissue-specific expression of head-to-tail cyclized miniproteins in Violaceae and structure determination of the root cyclotide Viola hederacea root cyclotide1. Plant Cell 16, 2204–2216 (2004).
Google Scholar
Ballard, H. E., Sytsma, K. J. & Kowal, R. R. Shrinking the violets: Phylogenetic relationships of infrageneric groups in Viola (Violaceae) based on internal transcribed spacer DNA sequences. Syst. Bot. 23, 439 (1998).
Google Scholar
Batista, F. & Sosa, P. A. Allozyme diversity in natural populations of Viola palmensis. Webb & Berth (Violaceae) from La Palma (Canary Islands): Implications for conservation genetics. Ann. Bot. 90, 725–733 (2002).
Google Scholar
Marcussen, T., Heier, L., Brysting, A. K., Oxelman, B. & Jakobsen, K. S. From gene trees to a dated allopolyploid network: Insights from the angiosperm genus Viola (Violaceae). Syst. Biol. 64, 84–101 (2014).
Google Scholar
Marcussen, T., Oxelman, B., Skog, A. & Jakobsen, K. S. Evolution of plant RNA polymerase IV/V genes: Evidence of subneofunctionalization of duplicated NRPD2/NRPE2-like paralogs in Viola (Violaceae). BMC Evol. Biol. 10, 45 (2010).
Google Scholar
Gilli, A. Viola anagae Gilli sp. Nov.. Feddes Repert. 89, 595–596 (1979).
Google Scholar
Moreno-Saiz, J. Lista Roja 2008 de la Flora Vascular Española (Dirección General de Medio Natural y Política Forestal, Ministerio de Medio Ambiente, y Medio Rural y Marino, y Sociedad Española de Biología de la Conservación de Plantas, 2008).
Broussalis, A. M. et al. First cyclotide from Hybanthus (Violaceae). Phytochemistry 58, 47–51 (2001).
Mulvenna, J. P., Wang, C. & Craik, D. J. CyBase: A database of cyclic protein sequence and structure. Nucleic Acids Res. 34, D192–D194 (2006).
Google Scholar
Hellinger, R. et al. Peptidomics of circular cysteine-rich plant peptides—analysis of the diversity of cyclotides from Viola tricolor by transcriptome- and proteome-mining. J. Proteome Res. https://doi.org/10.1021/acs.jproteome.5b00681 (2015).
Google Scholar
Slazak, B., Haugmo, T., Badyra, B. & Göransson, U. The life cycle of cyclotides: Biosynthesis and turnover in plant cells. Plant Cell Rep. 39, 1359–1367 (2020).
Google Scholar
Colgrave, M. L., Jones, A. & Craik, D. J. Peptide quantification by matrix-assisted laser desorption ionisation time-of-flight mass spectrometry: Investigations of the cyclotide kalata B1 in biological fluids. J. Chromatogr. A 1091, 187–193 (2005).
Google Scholar
Marcussen, T. Allozymic variation in the widespread and cultivated Viola odorata (Violaceae) in western Eurasia. Bot. J. Linn. Soc. 151, 563–571 (2006).
Google Scholar
Källback, P., Nilsson, A., Shariatgorji, M. & Andrén, P. E. msIQuant—quantitation software for mass spectrometry imaging enabling fast access, visualization, and analysis of large data sets. Anal. Chem. 88, 4346–4353 (2016).
Google Scholar
Pohlert, T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended.
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Media (Springer, 2009). https://doi.org/10.1007/978-0-387-98141-3.
Google Scholar
R Development Core Team, R. R A Language and Environment for Statistical Computing, Vol 1 409 (R Foundation for Statistical Computing, 2011).
Package, T. Package ‘ PMCMRplus ’ R topics documented (2019).
Kolde, R. pheatmap: Pretty Heatmaps. R package version 1.0.12. (2019). https://cran.r-project.org/package=pheatmap.
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).
Google Scholar
Sigrist, C. J. A. et al. PROSITE: A documented database using patterns and profiles as motif descriptors. Brief. Bioinform. 3, 265–274 (2002).
Google Scholar
Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 16, 276–277 (2000).
Google Scholar
Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).
Google Scholar
Burman, R. et al. Cyclotide proteins and precursors from the genus Gloeospermum: Filling a blank spot in the cyclotide map of Violaceae. Phytochemistry 71, 13–20 (2010).
Google Scholar
Levenfors, J. J., Hedman, R., Thaning, C., Gerhardson, B. & Welch, C. J. Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153. Soil Biol. Biochem. 36, 677–685 (2004).
Google Scholar
Broekaert, W. F., Terras, R. F. G., Cammue, B. P. A. & Vandedeyden, J. An automated quantitative assay for fungal growth inhibition. Most 69, 20 (1990).
CLSI. M38–A2 reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard—second edition. Clin. Lab. Stand. Inst. 20, 20 (2008).
Source: Ecology - nature.com