Bálint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, et al. Cryptic biodiversity loss linked to global climate change. Nat Clim Chang. 2011;1:313–8.
Google Scholar
Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42.
Google Scholar
Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S. Climate change and the past, present, and future of biotic interactions. Science. 2013;341:499–504.
Google Scholar
Haines A, Ebi K. The imperative for climate action to protect health. N. Engl J Med. 2019;380:263–73.
Google Scholar
Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, et al. Increase in crop losses to insect pests in a warming climate. Science. 2018;361:916–9.
Google Scholar
Kattwinkel M, Jan-Valentin K, Foit K, Liess M. Climate change, agricultural insecticide exposure, and risk for freshwater communities. Ecol Appl. 2011;21:2068–81.
Google Scholar
Moe SJ, De Schamphelaere K, Clements WH, Sorensen MT, Van den Brink PJ, Liess M. Combined and interactive effects of global climate change and toxicants on populations and communities. Environ Toxicol Chem. 2013;32:49–61.
Google Scholar
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25:345–53.
Google Scholar
Moran EV, Alexander JM. Evolutionary responses to global change: Lessons from invasive species. Ecol Lett. 2014;17:637–49.
Google Scholar
Harwood AD, You J, Lydy MJ. Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ Toxicol Chem. 2009;28:1051–8.
Google Scholar
Guo L, Su M, Liang P, Li S, Chu D. Effects of high temperature on insecticide tolerance in whitefly Bemisia tabaci (Gennadius) Q biotype. Pestic Biochem Physiol. 2018;150:97–104.
Google Scholar
Mao K, Jin R, Li W, Ren Z, Qin X, He S, et al. The influence of temperature on the toxicity of insecticides to Nilaparvata lugens (Stål). Pestic Biochem Physiol. 2019;156:80–86.
Google Scholar
Verheyen J, Delnat V, Stoks R. Increased daily temperature fluctuations overrule the ability of gradual thermal evolution to offset the increased pesticide toxicity under global warming. Environ Sci Technol. 2019;53:4600–8.
Google Scholar
Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA. 2007;104:8627–3863.
Google Scholar
Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA. 2012;109:8618–22.
Google Scholar
Jones RM, Desai C, Darby TM, Luo L, Wolfarth AA, Scharer CD, et al. Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep. 2015;12:1217–25.
Google Scholar
Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome. 2017;5:13.
Google Scholar
Pang R, Chen M, Yue L, Xing K, Li T, Kang K, et al. A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLoS Genet. 2018;14:e1007725.
Google Scholar
Kikuchi Y, Tada A, Musolin DL, Hari N, Hosokawa T, Fujisaki K, et al. Collapse of insect gut symbiosis under simulated climate change. mBio. 2016;7:e01578–16.
Google Scholar
Corbin C, Heyworth ER, Ferrari J, Hurst GDD. Heritable symbionts in a world of varying temperature. Heredity. 2017;118:10–20.
Google Scholar
Jia FX, Yang MS, Yang WJ, Wang JJ. Influence of continuous high temperature conditions on Wolbachia infection frequency and the fitness of Liposcelis tricolor (Psocoptera: Liposcelididae). Environ Entomol. 2009;38:1365–72.
Google Scholar
Burke G, Fiehn O, Moran N. Effects of facultative symbionts and heat stress on the metabolome of pea aphids. ISME J. 2010;4:242–52.
Google Scholar
Fan Y, Wernegreen JJ. Can’t take the heat: high temperature depletes bacterial endosymbionts of ants. Micro Ecol. 2013;66:727–33.
Google Scholar
Hussain M, Akutse KS, Ravindran K, Lin Y, Bamisile BS, Qasim M, et al. Effects of different temperature regimes on survival of Diaphorina citri and its endosymbiotic bacterial communities. Environ Microbiol. 2017;19:3439–49.
Google Scholar
Engl T, Eberl N, Gorse C, Krüger T, Schmidt THP, Plarre R, et al. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol Ecol. 2018;27:2095–108.
Google Scholar
Zhang XJ, Yu XP, Chen JM. High Temperature effects on yeast-like endosymbiotes and pesticide resistance of the small brown planthopper, Laodelphax striatellus. Rice Sci. 2008;15:326–30.
Google Scholar
Zhang B, Zuo TQ, Li HG, Sun LJ, Wang SF, Zhang CY, et al. Effect of heat shock on the susceptibility of Frankliniella occidentalis (Thysanoptera: Thripidae) to insecticides. J Integr Agric. 2016;15:2309–18.
Google Scholar
Karimzadeh R, Javanshir M, Hejazi MJ. Individual and combined effects of insecticides, inert dusts and high temperatures on Callosobruchus maculatus (Coleoptera: Chrysomelidae). J Stored Prod Res. 2020;89:10693.
Google Scholar
Michigan State University. Arthropod Pesticide Resistance Database (APRD). East Lansing: Michigan State University; 2020. http://www.pesticideresistance.com/.
Ju JF, Bing XL, Zhao DS, Guo Y, Xi Z, Hoffmann AA, et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2019;14:676–87.
Google Scholar
Zhang Y, Tang T, Li W, Cai T, Li J, Wan H. Functional profiling of the gut microbiomes in two different populations of the brown planthopper. Nilaparvata lugens J Asia Pac Entomol. 2018;21:1309–14.
Google Scholar
Ye YH, Seleznev A, Flores HA, Woolfit M, McGraw EA. Gut microbiota in Drosophila melanogaster interacts with Wolbachia but does not contribute to Wolbachia-mediated antiviral protection. J Invertebr Pathol. 2017;143:18–25.
Google Scholar
Yamada R, Floate KD, Riegler M, O’Neill SL. Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster. Genetics. 2007;177:801–8.
Google Scholar
Wari D, Kabir MA, Mujiono K, Hojo Y, Shinya T, Tani A, et al. Honeydew-associated microbes elicit defense responses against brown planthopper in rice. J Exp Bot. 2019;70:1683–96.
Google Scholar
Miller ALE, Tindall K, Leonard BR. Bioassays for monitoring insecticide resistance. J Vis Exp. 2010;46:2129.
Zhang J, Zhang Y, Wang Y, Yang Y, Cang X, Liu Z. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: a genome-scale analysis. Pestic Biochem Physiol. 2016;132:59–64.
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.
Google Scholar
Noda H, Koizumi Y, Zhang Q, Deng K. Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Mol Biol. 2001;31:727–37.
Google Scholar
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011. https://doi.org/10.14806/ej.17.1.200
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13:581–3.
Google Scholar
Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.
Google Scholar
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.
Google Scholar
Liu S, Ding Z, Zhang C, Yang B, Liu Z. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol. 2010;40:666–71.
Google Scholar
Tai V, James ER, Nalep CA, Scheffrahn RH, Perlman SJ, Keelinga PJ. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol. 2015;81:1059–70.
Google Scholar
Bale JS, Hayward SAL. Insect overwintering in a changing climate. J Exp Biol. 2010;213:980–94.
Google Scholar
Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, et al. Recent climate observations compared to projections. Science. 2007;316:709.
Google Scholar
Radchuk V, Reed T, Teplitsky C, van de Pol M, Charmantier A, Hassall C, et al. Adaptive responses of animals to climate change are most likely insufficient. Nat Commun. 2019;10:3019.
Google Scholar
Iwamura T, Guzman-Holst A, Murray KA. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat Commun. 2020;11:2130.
Google Scholar
Li J, Mao T, Wang H, Lu Z, Qu J, Fang Y, et al. The CncC/keap1 pathway is activated in high temperature-induced metamorphosis and mediates the expression of Cyp450 genes in silkworm, Bombyx mori. Biochem Biophys Res Commun. 2019;541:1045–50.
Google Scholar
Kalsi M, Palli SR. Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say). Insect Biochem Mol Biol. 2017;83:1–12.
Google Scholar
Kalsi M, Palli SR. Transcription factors, CncC and Maf, regulate expression of CYP6BQ genes responsible for deltamethrin resistance in Tribolium castaneum. Insect Biochem Mol Biol. 2015;65:47–56.
Google Scholar
Misra JR, Lam G, Thummel CS. Constitutive activation of the Nrf2/Keap1 pathway in insecticide-resistant strains of Drosophila. Insect Biochem Mol Biol. 2013;43:1116–24.
Google Scholar
Tang B, Cheng Y, Li Y, Li W, Ma Y, Zhou Q, et al. Adipokinetic hormone regulates cytochrome P450-mediated imidacloprid resistance in the brown planthopper, Nilaparvata lugens. Chemosphere. 2020;259:127490.
Google Scholar
Cheng Y, Li Y, Li W, Song Y, Zeng R, Lu K. Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in Nilaparvata lugens via the activation of cytochrome P450 and UDP-glycosyltransferase genes. Chemosphere. 2021;263:128269.
Google Scholar
Li Y, Liu X, Wang N, Zhang Y, Hoffmann AA, Guo H. Background-dependent Wolbachia-mediated insecticide resistance in Laodelphax striatellus. Environ Microbiol. 2020;22:2653–63.
Google Scholar
Berticat C, Rousset F, Raymond M, Berthomieu A, Weill M. High Wolbachia density in insecticide-resistant mosquitoes. Proc R Soc B Biol Sci. 2002;269:1413–6.
Google Scholar
Zhang G, Hussain M, O’Neill SL, Asgari S. Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti. Proc Natl Acad Sci USA. 2013;110:10276–81.
Google Scholar
Bi J, Sehgal A, Williams JA, Wang YF. Wolbachia affects sleep behavior in Drosophila melanogaster. J Insect Physiol. 2018;107:81–88.
Google Scholar
Roughgarden J, Gilbert SF, Rosenberg E, Zilber-Rosenberg I, Lloyd EA. Holobionts as units of selection and a model of their population dynamics and evolution. Biol Theory. 2018;13:44–65.
Google Scholar
Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2012;109:E23–31.
Google Scholar
Gong JT, Li Y, Li TP, Liang Y, Hu L, Zhang D, et al. Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection. Curr Biol. 2020;30:4837–45.
Google Scholar
Elzaki MEA, Li ZF, Wang J, Xu L, Liu N, Zeng RS, et al. Activiation of the nitric oxide cycle by citrulline and arginine restores susceptibility of resistant brown planthoppers to the insecticide imidacloprid. J Hazard Mater. 2020;396:122755.
Google Scholar
Werren JH. Biology of Wolbachia. Annu Rev Entomol. 1997;42:587–609.
Google Scholar
Kokou F, Sasson G, Nitzan T, Doron-Faigenboim A, Harpaz S, Cnaani A, et al. Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. Elife. 2018;77:e36398.
Google Scholar
Source: Ecology - nature.com