in

Annual climatic fluctuations and short-term genetic variation in the eastern spadefoot toad

  • 1.

    Hoffman, E. A., Schueler, F. W. & Blouin, M. S. Effective population sizes and temporal stability of genetic structure in Rana pipiens, the northern leopard frog. Evolution 58, 2536–2545. https://doi.org/10.1111/j.0014-3820.2004.tb00882.x (2004).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    Hoeck, P. E. A., Bollmer, J. L., Parker, P. G. & Keller, L. F. Differentiation with drift: A spatio-temporal genetic analysis of Galapagos mockingbird populations (Mimus spp.). Philos. Trans. R. Soc. B 365, 1127–1138. https://doi.org/10.1098/rstb.2009.0311 (2010).

    Article 

    Google Scholar 

  • 3.

    Maebe, K. et al. A century of temporal stability of genetic diversity in wild bumblebees. Sci. Rep. 6, 38289. https://doi.org/10.1038/srep38289 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Schmid, S. et al. Spatial and temporal genetic dynamics of the grasshopper Oedaleus decorus revealed by museum genomics. Ecol. Evol. 8, 1480–1495. https://doi.org/10.1002/ece3.3699 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Garant, D., Dodson, J. J. & Bernatchez, L. Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar). Mol. Ecol. 9, 615–628. https://doi.org/10.1046/j.1365-294X.2000.00909.x (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Jonsdottir, O. D. B., Danielsdottir, A. K. & Naevdal, G. Genetic differentiation among Atlantic cod (Gadus morhua) in Icelandic waters: Temporal stability. ICES J. Mar. Sci. 58, 114–122. https://doi.org/10.1006/jmsc.2000.0995 (2001).

    Article 

    Google Scholar 

  • 7.

    Rojas-Hernandez, N., Veliz, D., Riveros, M. P., Fuentes, J. P. & Pardo, L. M. Highly connected populations and temporal stability in allelic frequencies of a harvested crab from the Southern Pacific coast. PLoS ONE 11, 1–18. https://doi.org/10.1371/journal.pone.0166029 (2016).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Vera, M. et al. Current genetic status, temporal stability and structure of the remnant wild European flat oyster populations: Conservation and restoring implications. Mar. Biol. 163, 1–17. https://doi.org/10.1007/s00227-016-3012-x (2016).

    Article 

    Google Scholar 

  • 9.

    Richards, C. M., Emery, S. N. & McCauley, D. E. Genetic and demographic dynamics of small populations of Silene latifolia. Heredity 90, 181–186. https://doi.org/10.1038/sj.hdy.6800214 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Mhemmed, G., Kamel, H. & Chedly, A. Does habitat fragmentation reduce genetic diversity and subpopulation connectivity?. Ecography 31, 751–756. https://doi.org/10.1111/j.1600-0587.2008.05622.x (2008).

    Article 

    Google Scholar 

  • 11.

    Gomaa, N. H., Montesinos-Navarro, A., Alonso-Blanco, C. & Picó, F. X. Temporal variation in genetic diversity and effective population size of Mediterranean and subalpine Arabidopsis thaliana populations. Mol. Ecol. 20, 3540–3554. https://doi.org/10.1111/j.1365-294X.2011.05193.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 12.

    Hinkson, K. M. & Richter, S. C. Temporal trends in genetic data and effective population size support efficacy of management practices in critically endangered dusky gopher frogs (Lithobates sevosus). Ecol. Evol. 6, 2667–2678. https://doi.org/10.1002/ece3.2084 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Savage, W. K., Fremier, A. K. & Shaffer, H. B. Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time. Mol. Ecol. 19, 3301–3314. https://doi.org/10.1111/j.1365-294X.2010.04718.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • 14.

    Ficetola, G. F., Garner, T. W. J., Wang, J. & De Bernardi, F. Rapid selection against inbreeding in a wild population of a rare frog. Evol. Appl. 4, 30–38. https://doi.org/10.1111/j.1752-4571.2010.00130.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 15.

    Richter, S. C. & Nunziata, S. O. Survival to metamorphosis is positively related to genetic variability in a critically endangered amphibian species. Anim. Conserv. 17, 265–274. https://doi.org/10.1111/acv.12088 (2014).

    Article 

    Google Scholar 

  • 16.

    Holmes, I. & Crawford, A. Temporal population genetic instability in range-edge western toads, anaxyrus boreas. J. Hered. 106, 45–56. https://doi.org/10.1093/jhered/esu068 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 17.

    Munwes, I. et al. The change in genetic diversity down the core-edge gradient in the eastern spadefoot toad (Pelobates syriacus). Mol. Ecol. 19, 2675–2689. https://doi.org/10.1111/j.1365-294X.2010.04712.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Agasyan, A., Tuniyev, B., Isailovic, J. C., Lymberakis, P., Andrén, C., Cogalniceanu, D. et al. Pelobates syriacus. The IUCN Red List of Threatened Species. www.iucnredlist.org (2009).

  • 19.

    Gafny, S. The biology and ecology of the Syrian spadefoot toad Pelobates syriacus in Israel (MSc thesis). Tel Aviv University (1986).

  • 20.

    Hollar, A. R., Choi, J., Grimm, A. T. & Buchholz, D. R. Higher thyroid hormone receptor expression correlates with short larval periods in spadefoot toads and increases metamorphic rate. Gen. Comp. Endocrinol. 173, 190–198. https://doi.org/10.1016/j.ygcen.2011.05.013 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Székely, P., Tudor, M. & Cogalniceanu, D. Effect of habitat drying on the development of the Eastern spadefoot toad (Pelobates syriacus) tadpoles. Amphib. Reptil. 31, 425–434. https://doi.org/10.1163/156853810791769536 (2010).

    Article 

    Google Scholar 

  • 22.

    Storz, B. L. & Travis, J. Temporally dissociated, trait-specific modifications underlie phenotypic polyphenism in Spea multiplicata tadpoles, which suggests modularity. Sci. World J. 7, 715–726. https://doi.org/10.1100/tsw.2007.159 (2007).

    Article 

    Google Scholar 

  • 23.

    Mahlstein, I., Portmann, R. W., Daniel, J. S., Solomon, S. & Knutti, R. Perceptible changes in regional precipitation in a future climate. Geophys. Res. Lett. 39, 1–5. https://doi.org/10.1029/2011GL050738 (2012).

    Article 

    Google Scholar 

  • 24.

    Fisher, R. The Genetical Theory of Natural Selection (Oxford University Press, 1930).

    Book 

    Google Scholar 

  • 25.

    Bürger, R. The maintenance of genetic variation: A functional analytic approach to quantitative genetic models. In Population Genetics and Evolution (ed. de Jong, G.) 63–72 (Springer, 1988).

    Chapter 

    Google Scholar 

  • 26.

    Parsons, P. A. Evolutionary rates: Stress and species boundaries. Ann. Rev. Ecol. Syst. 22, 1–18. https://doi.org/10.1146/annurev.es.22.110191.000245 (1991).

    Article 

    Google Scholar 

  • 27.

    Safriel, U. N., Volis, S. & Kark, S. Core and peripheral populations and global climate change. Isr. J. Plant Sci. 42, 331–345. https://doi.org/10.1080/07929978.1994.10676584 (1994).

    Article 

    Google Scholar 

  • 28.

    Wan, Q. H., Wu, H., Fujihara, T. & Fang, S. G. Which genetic marker for which conservation genetics issue?. Electrophoresis 25, 2165–2176. https://doi.org/10.1002/elps.200305922 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Faircloth, B. C. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94. https://doi.org/10.1111/j.1471-8286.2007.01884.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Gafny, S. & Gasith, A. Rainpools in Israel. Internal report, the Nature and Parks Authority of Israel (2005).

  • 31.

    Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144. https://doi.org/10.1016/0022-5193(67)90048-3 (1966).

    Article 

    Google Scholar 

  • 32.

    Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • 35.

    Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Nat. Acad. Sci. U.S.A. 76, 5269–5273. https://doi.org/10.1073/pnas.76.10.5269 (1979).

    ADS 
    CAS 
    Article 
    MATH 

    Google Scholar 

  • 36.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–656. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • 37.

    Saltelli, A. Making best use of model valuations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297. https://doi.org/10.1016/S0010-4655(02)00280-1 (2002).

    ADS 
    CAS 
    Article 
    MATH 

    Google Scholar 

  • 38.

    Robinson, M. R. et al. The Impact of environmental heterogeneity on genetic architecture in a wild population of soay sheep. Genetics 181, 1639–1648. https://doi.org/10.1534/genetics.108.086801 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Charmantier, A. & Garant, D. Environmental quality and evolutionary potential: lessons from wild populations. Proc. R. Soc. B 272, 1415–1425. https://doi.org/10.1098/rspb.2005.3117 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Stanescu, F., Iosif, R., Szkely, P., Szkely, D. & Cogalniceanu, D. Mass migration of Pelobates syriacus (Boettger, 1889) metamorphs. Herpetozoa 29, 87–89 (2016).

    Google Scholar 

  • 41.

    Levin, N., Elron, E. & Gasith, A. Decline of wetland ecosystems in the coastal plain of Israel during the 20th century: Implications for wetland conservation and management. Landsc. Urban Plan. 92, 220–232. https://doi.org/10.1016/j.landurbplan.2009.05.009 (2009).

    Article 

    Google Scholar 

  • 42.

    Waples, R. S. & Teel, D. J. Conservation genetics of pacific salmon I. Temporal changes in allele frequency. Conser. Biol. 4, 144–156. https://doi.org/10.1111/j.1523-1739.1990.tb00103.x (1990).

    Article 

    Google Scholar 

  • 43.

    Chen, N. et al. Allele frequency dynamics in a pedigreed natural population. Proc. Nat. Acad. Sci. U.S.A. 116, 2158–2164. https://doi.org/10.1073/pnas.1813852116 (2019).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Ballon, Y. The effects of different light regimes on activity rhythms of the eastern spadefoot toad (Pelobates syriacus). M.Sc. thesis. Department of Zoology. Tel-Aviv University (2015).

  • 45.

    Cogalniceanu, D. et al. Age and body size in populations of two syntopic spadefoot toads (genus Pelobates) at the limit of their ranges. J. Herpetol. 48, 537–545. https://doi.org/10.1670/13-101 (2014).

    Article 

    Google Scholar 

  • 46.

    Dimmitt, M. Environmental correlates of emergence in spadefoot toads (Scaphiopus). J. Herpetol. 14, 21–29. https://doi.org/10.2307/1563871 (1980).

    Article 

    Google Scholar 

  • 47.

    Crispo, E. & Chapman, L. J. Population genetic structure across dissolved oxygen regimes in an African cichlid fish. Mol. Ecol. 17, 2134–2148. https://doi.org/10.1111/j.1365-294X.2008.03729.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Crispo, E. & Chapman, L. J. Temporal variation in population genetic structure of a riverine African cichlid fish. J. Hered. 101, 97–106. https://doi.org/10.1093/jhered/esp078 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 49.

    Kitanishi, S., Ikeda, T. & Yamamoto, T. Short-term temporal instability in fine-scale genetic structure of masu salmon. Freshw. Biol. 62, 1655–1664. https://doi.org/10.1111/fwb.12978 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma

    Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass