in

Subglacial erosion has the potential to sustain microbial processes in Subglacial Lake Whillans, Antarctica

  • 1.

    Achberger, A. M. et al. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica. Front. Microbiol. 7, 1457, https://doi.org/10.3389/fmicb.2016.01457 (2016).

  • 2.

    Boyd, E. S., Skidmore, M., Mitchell, A. C., Bakermans, C. & Peters, J. W. Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2, 685–692 (2010).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310–313 (2014).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Michaud, A. B. et al. Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet. Nat. Geosci. 10, 582–586 (2017).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Mikucki, J. A. et al. A contemporary microbially maintained subglacial ferrous “ocean”. Science 324, 397–400 (2009).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Skidmore, M., Anderson, S. P., Sharp, M., Foght, J. & Lanoil, B. D. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl. Environ. Microbiol. 71, 6986–6997 (2005).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Stibal, M. et al. Methanogenic potential of Arctic and Antarctic subglacial environments with contrasting organic carbon sources. Global Change Biol. 18, 3332–3345 (2012).

    Article 

    Google Scholar 

  • 8.

    Vick-Majors, T. J. et al. Physiological ecology of microorganisms in subglacial lake whillans. Front. Microbiol. 7, 1705, https://doi.org/10.3389/fmicb.2016.01705 (2016).

  • 9.

    Lanoil, B. et al. Bacteria beneath the West Antarctic Ice Sheet. Environ. Microbiol. 11, 609–615 (2009).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Purcell, A. M. et al. Microbial sulfur transformations in sediments from Subglacial Lake Whillans. Front. Microbiol. 5, 594, https://doi.org/10.3389/fmicb.2014.00594 (2014).

  • 11.

    Michaud, A. B. et al. Solute sources and geochemical processes in Subglacial Lake Whillans, West Antarctica. Geology 44, 347–350 (2016).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Brunner, B., Arnold, G. L., Roy, H., Muller, I. A. & Jorgensen, B. B. Off limits: sulfate below the sulfate methane transition. Front. Earth Sci. 4, 16 (2016).

    Article 

    Google Scholar 

  • 13.

    Holmkvist, L. et al. Sulfate reduction below the sulfate–methane transition in Black Sea sediments. Deep Sea Res. Part I: Oceanogr. Res. Pap. 58, 493–504 (2011).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Siegfried, M. R., Fricker, H. A., Roberts, M., Scambos, T. A. & Tulaczyk, S. A decade of West Antarctic subglacial lake interactions from combined ICESat and CryoSat-2altimetry. Geophys. Res. Lett. 41, 891–898 (2014).

    Article 

    Google Scholar 

  • 15.

    Christner, B. C., Skidmore, M. L., Priscu, J. C., Tranter, M. & Foreman, C. M. In Psychrophiles: From Biodiversity to Biotechology (Springer, Berlin), p. 51–71 (eds F. Schinner, R. Margesin, J.-C. Marx, & C. Gerday) (2008).

  • 16.

    Stumm, W. & Morgan, J. J. Aquatic Chemistry. Chemical Equilibria and Rates in Natural Waters. 3rd edn, 1022 (Wiley Interscience, 1996).

  • 17.

    Wang, G., Spivack, A. J., Rutherford, S., Manor, U. & D’Hondt, S. Quantification of co-occurring reaction rates in deep subseafloor sediments. Geochim. Cosmochim. Acta 72, 3479–3488 (2008).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Sharp, M. & Tranter, M. Glacier biogeochemistry. Geochem. Perspect. 7, 1–164 (2018).

    Google Scholar 

  • 19.

    Christner, B. C. et al. Limnological conditions in Subglacial Lake Vostok, Antarctica. Limnol. Oceanogr. 51, 2485–2501 (2006).

    Article 

    Google Scholar 

  • 20.

    Wadham, J. L. et al. Potential methane reservoirs beneath Antarctica. Nature 488, 633–637 (2012).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Macdonald, M. L., Wadham, J. L., Telling, J. & Skidmore, M. L. Glacial erosion liberates lithologic energy sources for microbes and acidity for chemical weathering beneath glaciers and ice sheets. Front. Earth Sci. 6, 212 (2018).

    Article 

    Google Scholar 

  • 22.

    Telling, J. et al. Rock comminution as a source of hydrogen for subglacial ecosystems. Nat. Geosci. 8, 851–855 (2015).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Tulaczyk, S., Kamb, B., Scherer, R. P. & Engelhardt, H. F. Sedimentary processes at the base of a West Antarctic ice stream: Constraints from textural and compositional properties of subglacial debris. J. Sediment. Res. 68, 487–496 (1998).

    Article 

    Google Scholar 

  • 24.

    Hodson, T. O. et al. Physical processes in Subglacial Lake Whillans, West Antarctica: inferences from sediment cores. Earth Planet. Sci. Lett. 444, 56–63 (2016).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Kameda, J., Saruwatari, K. & Tanaka, H. H-2 generation during dry grinding of kaolinite. J. Colloid Interface Sci. 275, 225–228 (2004).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Kita, I., Matsuo, S. & Wakita, H. H-2 generation by reaction between H2O and crushed rock – an experimental-study on H-2 degassing from the active fault zone. J. Geophys. Res. 87, 789–795 (1982).

    Google Scholar 

  • 27.

    Nesbitt, H. W., Bancroft, G. M., Pratt, A. R. & Scaini, M. J. Sulfur and iron surface states on fractured pyrite surfaces. Am. Mineral. 83, 1067–1076 (1998).

  • 28.

    Borda, M. J., Elsetinow, A. R., Schoonen, M. A. & Strongin, D. R. Pyrite-induced hydrogen peroxide formation as a driving force in the evolution of photosynthetic organisms on an early earth. Astrobiology 1, 283–288 (2001).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Borda, M. J., Elsetinow, A. R., Strongin, D. R. & Schoonen, M. A. A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochim. Cosmochim. Acta 67, 935–939 (2003).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Raiswell, R. Chemical models of solute acquisition in glacial meltwaters. J. Glaciol. 30, 49–57 (1984).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Brown, G. H. Glacier meltwater hydrochemistry. Appl. Geochem. 17, 855–883 (2002).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Goldstein, R. H. Fluid inclusions in sedimentary and diagenetic systems. Lithos 55, 159–193 (2001).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Konnerup-Madsen, J. & Rose-Hansen, J. Volatiles associated with alkaline igneous rift activity – fluid inclusions in the Ilimaussaq intrusion and the Gardar granitic complexes (south Greenland). Chem. Geol. 37, 79–93 (1982).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Keller, W. D. & Reesman, A. L. Glacial milks and their laboratory-simulated counterparts. Geol. Soci. Am. Bull. 74, 61–76 (1963).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Walter, B. F., Steele-MacInnis, M. & Markl, G. Sulfate brines in fluid inclusions of hydrothermal veins: Compositional determinations in the system H2O-Na-Ca-Cl-SO4. Geochim. Cosmochim. Acta 209, 184–203 (2017).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Tranter, M. et al. Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland – a new model. Hydrol. Process. 16, 959–993 (2002).

    Article 

    Google Scholar 

  • 37.

    Sugahara, H., Takano, Y., Ogawa, N. O., Chikaraishi, Y. & Ohkouchi, N. Nitrogen isotopic fractionation in ammonia during adsorption on silicate surfaces. ACS Earth Space Chem. 1, 24–29 (2017).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Kameda, J., Saruwatari, K. & Tanaka, H. H2 generation in wet grinding of granite and single-crystal powders and implications for H2 concentration on active faults. Geophys. Res. Lett. 30, 2063, https://doi.org/10.1029/2003gl018252 (2003).

  • 39.

    Martinelli, G. & Plescia, P. Carbon dioxide and methane emissions from calcareous-marly rock under stress: experimental tests results. Ann. Geophys. 48, 167–173 (2005).

    Google Scholar 

  • 40.

    Burke, E. A. J. Raman microspectrometry of fluid inclusions. Lithos 55, 139–158 (2001).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Diamond, L. W. Review of the systematics of CO2–H2O fluid inclusions. Lithos 55, 69–99 (2001).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Wang, Q., Shen, C., Chen, Q., Zhang, L. & Lu, H. Pore characteristics and gas released by crush methods of Wufeng-Longmaxi Shale in the Northwest of Hubei Province, China. Acta Geol. Sin. 89, 93–96 (2015).

    Article 

    Google Scholar 

  • 43.

    Martinelli, G. & Plescia, P. Mechanochemical dissociation of calcium carbonate: laboratory data and relation to natural emissions of CO2. Phys. Earth Planet. Inter. 142, 205–214 (2004).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Etiope, G. & Ionescu, A. Low-temperature catalytic CO2 hydrogenation with geological quantities of ruthenium: a possible abiotic CH4 source in chromitite-rich serpentinized rocks. Geofluids 15, 438–452 (2015).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Neubeck, A., Duc, N. T., Bastviken, D., Crill, P. & Holm, N. G. Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70°C. Geochem. Trans. 12, 6 (2011).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Hasegawa, M., Ogata, T. & Sato, M. Mechano-radicals produced from ground quartz and quartz glass. Powder Technol. 85, 269–274 (1995).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Bak, E. N. et al. Production of reactive oxygen species from abraded silicates. Implications for the reactivity of the Martian soil. Earth Planet. Sci. Lett. 473, 113–121 (2017).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Zhang, P., Yuan, S. & Liao, P. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions. Geochim. Cosmochim. Acta 172, 444–457 (2016).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Kaur, J. & Schoonen, M. A. Non-linear hydroxyl radical formation rate in dispersions containing mixtures of pyrite and chalcopyrite particles. Geochim. Cosmochim. Acta 206, 364–378 (2017).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Hurowitz, J. A., Tosca, N. J., McLennan, S. M. & Schoonen, M. A. A. Production of hydrogen peroxide in Martian and lunar soils. Earth Planet. Sci. Lett. 255, 41–52 (2007).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Kwan, W. P. & Voelker, B. M. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ. Sci. Technol. 36, 1467–1476 (2002).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Bottrell, S. H. & Tranter, M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d’Arolla, Switzerland. Hydrol. Process. 16, 2363–2368 (2002).

    Article 

    Google Scholar 

  • 53.

    Hawkings, J. R. et al. Biolabile ferrous iron bearing nanoparticles in glacial sediments. Earth Planet. Sci. Lett. 493, 92–101 (2018).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Hawkings, J. R. et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929 (2014).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Anastasio, C., Galbavy, E. S., Hutterli, M. A., Burkhart, J. F. & Friel, D. K. Photoformation of hydroxyl radical on snow grains at Summit, Greenland. Atmos. Environ. 41, 5110–5121 (2007).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Anastasio, C. & Jordan, A. L. Photoformation of hydroxyl radical and hydrogen peroxide in aerosol particles from Alert, Nunavut: implications for aerosol and snowpack chemistry in the Arctic. Atmos. Environ. 38, 1153–1166 (2004).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314 (1999).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Bernard, B. B., Brooks, J. M. & Sackett, W. M. Light (C1-C3) hydrocarbons in shelf sediments of Gulf of Mexico. Trans. Am. Geophys. Union 57, 931 (1976).

    Google Scholar 

  • 59.

    Siegfried, M. R. & Fricker, H. A. Thirteen years of subglacial lake activity in Antarctica from multi-mission satellite altimetry. Ann. Glaciol. 59, 42–55 (2018).

    Article 

    Google Scholar 

  • 60.

    Fisher, A. T. et al. High geothermal heat flux measured below the West Antarctic Ice Sheet. Sci. Adv. 1, 9 (2015).

    Article 

    Google Scholar 

  • 61.

    Tulaczyk, S. et al. WISSARD at Subglacial Lake Whillans, West Antarctica: scientific operations and initial observations. Ann. Glaciol. 55, 51–58 (2014).

    Article 

    Google Scholar 

  • 62.

    Alley, R. B., Blankenship, D. D., Bentley, C. R. & Rooney, S. T. Till beneath ice stream B. 3. Till deformation: evidence and implications. J. Geophys. Res.-Solid Earth Planets 92, 8921–8929 (1987).

    Article 

    Google Scholar 

  • 63.

    Fricker, H. A. & Scambos, T. Connected subglacial lake activity on lower Mercer and Whillans Ice Streams, West Antarctica, 2003-2008. J. Glaciol. 55, 303–315 (2009).

    Article 

    Google Scholar 

  • 64.

    Alley, R. B., Blankenship, D. D., Bentley, C. R. & Rooney, S. T. Deformation of till beneath ice stream B, West Antarctica. Nature 322, 57–59 (1986).

    Article 

    Google Scholar 

  • 65.

    Vick-Majors, T. J. et al. Biogeochemical connectivity between freshwater ecosystems beneath the West Antarctic Ice Sheet and the sub-ice marine environment. Global Biogeochem. Cycles 34, 17 (2020).

    Article 
    CAS 

    Google Scholar 

  • 66.

    Christianson, K., Jacobel, R. W., Horgan, H. J., Anandakrishnan, S. & Alley, R. B. Subglacial Lake Whillans – Ice-penetrating radar and GPS observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth Planet. Sci. Lett. 331, 237–245 (2012).

    Article 
    CAS 

    Google Scholar 

  • 67.

    Horgan, H. J. et al. Subglacial Lake Whillans – Seismic observations of a shallow active reservoir beneath a West Antarctic ice stream. Earth Planet. Sci. Lett. 331, 201–209 (2012).

    Article 
    CAS 

    Google Scholar 

  • 68.

    Fricker, H. A., Scambos, T., Bindschadler, R. & Padman, L. An active subglacial water system in West Antarctica mapped from space. Science 315, 1544 (2007).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Priscu, J. C. et al. A microbiologically clean strategy for access to the Whillans Ice Stream subglacial environment. Antarct. Sci. 25, 637–647 (2013).

    Article 

    Google Scholar 

  • 70.

    Michaud, A. B. et al. Environmentally clean access to Antarctic subglacial aquatic environments. Antarct. Sci. 32, 329–340 (2020).

    Article 

    Google Scholar 

  • 71.

    Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N. & Van Cappellen, P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl. Geochem. 15, 785–790 (2000).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Parkhurst, D. L. & Appelo, C. J. User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259, 312 (1999).

  • 73.

    Baga, A. N., Johnson, G. R. A., Nazhat, N. B. & Saadalla-Nazhat, R. A. A simple spectrophotometric determination of hydrogen peroxide at low concentrations in aqueous solution. Anal. Chim. Acta 204, 349–353 (1988).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Miller, B. R. et al. Medusa: A Sample Preconcentration and GC/MS Detector System for in Situ Measurements of Atmospheric Trace Halocarbons, Hydrocarbons, and Sulfur Compounds. Anal Chem. 80, 1536–1545 (2008).

  • 75.

    Arnold, T. Nitrogen trifluoride global emissions estimated from updated atmospheric measurements. Proc Natl Acad Sci. 110, 2029–2034 (2013).

  • 76.

    UC Davis Stable Isotope Facility. Analysis of Carbon Dioxide (CO2) by GasBench-IRMS, https://stableisotopefacility.ucdavis.edu/co2.html (2018).

  • 77.

    UC Davis Stable Isotope Facility. Analysis of Methane (CH4) by GasBench-Precon-IRMS, https://stableisotopefacility.ucdavis.edu/ch4.html (2018).

  • 78.

    Yarnes, C. δ13C and δ2H measurement of methane from ecological and geological sources by gas chromatography/combustion/pyrolysis isotope-ratio mass spectrometry. Rapid Commun. Mass Spectrom. 27, 1036–1044 (2013).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Matsuoka, K., Skoglund, A., & Roth, G. Quantarctica3 (Norwegian Polar Institute, 2018).

  • 80.

    Haran, T., Bohlander, J., Scambos, T., Painter, T. & Fahnestock, M. MODIS Mosaic of 883 Antarctica 2003-2004 (MOA2004) Image Map, Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA., 2005).

  • 81.

    Smith, B., Joughin, I., Tulaczyk, S. & Fricker, H. A. Antarctic Active Subglacial Lake Inventory 887 from ICESat Altimetry, Version 1 (NSIDC: National Snow and Ice Data Center, Boulder, Colorado USA., 2012).


  • Source: Ecology - nature.com

    Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma

    Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass