in

Alkalinity cycling and carbonate chemistry decoupling in seagrass mystify processes of acidification mitigation

  • 1.

    Waldbusser, G. G. & Salisbury, J. E. Ocean acidification in the coastal zone from an Organism’s perspective: Multiple system parameters, frequency domains, and habitats. Annu. Rev. Mar. Sci. 6, 221–247 (2014).

    ADS 
    Article 

    Google Scholar 

  • 2.

    Duarte, C. M. et al. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries Coasts 36, 221–236 (2013).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Johnson, Z. I. et al. Dramatic variability of the carbonate system at a temperate coastal ocean site (Beaufort, North Carolina, USA) is regulated by physical and biogeochemical processes on multiple timescales. PLoS ONE 8, e85117 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Baumann, H. & Smith, E. M. Quantifying metabolically driven ph and oxygen fluctuations in US nearshore habitats at diel to interannual time scales. Estuaries Coasts 41, 1102–1117 (2018).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Carstensen, J. & Duarte, C. M. Drivers of pH variability in coastal ecosystems. Environ. Sci. Technol. 53, 4020–4029 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Clark, H. R. & Gobler, C. J. Diurnal fluctuations in CO2 and dissolved oxygen concentrations do not provide a refuge from hypoxia and acidification for early-life-stage bivalves. Mar. Ecol. Prog. Ser. 558, 1–14 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Mangan, S., Urbina, M. A., Findlay, H. S., Wilson, R. W. & Lewis, C. Fluctuating seawater pH/pCO2 regimes are more energetically expensive than static pH/pCO2 levels in the mussel Mytilus edulis. Proc. R. Soc. B Biol. Sci. 284, 20171642 (2017).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Hauri, C., Gruber, N., McDonnell, A. M. P. & Vogt, M. The intensity, duration, and severity of low aragonite saturation state events on the California continental shelf. Geophys. Res. Lett. 40, 3424–3428 (2013).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Pacella, S. R., Brown, C. A., Waldbusser, G. G., Labiosa, R. G. & Hales, B. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification. Proc. Natl. Acad. Sci. U. S. A. 115, 3870–3875 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Adelsman, H. & Whitely Binder, L. Ocean Acidification: From Knowledge to Action, Washington State’s Strategic Response. Washington State Blue Ribbon Panel on Ocean Acidification. (Washington Department of Ecology, Olympia, Washington, 2012).

  • 11.

    Nielsen, K. et al. Emerging Understanding of the Potential Role of Seagrass and Kelp as an Ocean Acidification Management Tool in California (California Ocean Science Trust, Oakland, CA, 2018).

  • 12.

    Ekstrom, J. A. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change 5, 207–214 (2015).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Koweek, D. A. et al. Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. Ecol. Appl. 28, 1694–1714 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Miller, C. A., Yang, S. & Love, B. A. Moderate increase in TCO2 enhances photosynthesis of seagrass Zostera japonica, but not Zostera marina: Implications for acidification mitigation. Front. Mar. Sci. 4, 2 (2017).

    Article 

    Google Scholar 

  • 15.

    Cyronak, T. et al. Short-term spatial and temporal carbonate chemistry variability in two contrasting seagrass meadows: Implications for pH buffering capacities. Estuaries Coasts 41, 1282–1296 (2018).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Unsworth, R. K. F., Collier, C. J., Henderson, G. M. & McKenzie, L. J. Tropical seagrass meadows modify seawater carbon chemistry: Implications for coral reefs impacted by ocean acidification. Environ. Res. Lett. 7, 024026 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Hendriks, I. E. et al. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11, 333–346 (2014).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Greiner, C. M., Klinger, T., Ruesink, J. L., Barber, J. S. & Horwith, M. Habitat effects of macrophytes and shell on carbonate chemistry and juvenile clam recruitment, survival, and growth. J. Exp. Mar. Biol. Ecol. 509, 8–15 (2018).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Groner, M. L. et al. Oysters and eelgrass: Potential partners in a high pCO2 ocean. Ecology 99, 1802–1814 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Waldbusser, G. G. et al. Ocean acidification has multiple modes of action on bivalve larvae. PLoS ONE 10, e0128376 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Hurd, C. L. et al. Ocean acidification as a multiple driver: How interactions between changing seawater carbonate parameters affect marine life. Mar. Freshw. Res. 71, 263–274 (2020).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Hales, B., Suhrbier, A., Waldbusser, G. G., Feely, R. A. & Newton, J. A. The carbonate chemistry of the “Fattening Line,” Willapa Bay, 2011–2014. Estuaries Coasts 1–14 (2016).

  • 23.

    Ricart, A. M. et al. Coast-wide evidence of low pH amelioration by seagrass ecosystems. Glob. Change Biol. 27, 2580–2591 (2021).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Hoppe, C. J. M., Langer, G., Rokitta, S. D., Wolf-Gladrow, D. A. & Rost, B. Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies. Biogeosciences 9, 2401–2405 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    Buapet, P., Gullström, M. & Björk, M. Photosynthetic activity of seagrasses and macroalgae in temperate shallow waters can alter seawater pH and total inorganic carbon content at the scale of a coastal embayment. Mar. Freshw. Res. 2, 2 (2013).

    Google Scholar 

  • 26.

    Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 27.

    Comeau, S., Carpenter, R. C. & Edmunds, P. J. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc. R. Soc. B-Biol. Sci. 280, 20122374 (2013).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Kawahata, H. et al. Perspective on the response of marine calcifiers to global warming and ocean acidification—Behavior of corals and foraminifera in a high CO2 world “hot house”. Prog. Earth Planet. Sci. 6, 5 (2019).

    Article 

    Google Scholar 

  • 29.

    Ries, J. B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim. Cosmochim. Acta 75, 4053–4064 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. Algal evolution in relation to atmospheric CO2: Carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos. Trans. R. Soc. B Biol. Sci. 367, 493–507 (2012).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Vieira, S., Cartaxana, P., Máguas, C. & Marques da Silva, J. Photosynthesis in estuarine intertidal microphytobenthos is limited by inorganic carbon availability. Photosynth. Res. 128, 85–92 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Egleston, E. S., Sabine, C. L. & Morel, F. M. M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob. Biogeochem. Cycles 24, GB1002 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Cyronak, T., Santos, I. R., McMahon, A. & Eyre, B. D. Carbon cycling hysteresis in permeable carbonate sands over a diel cycle: Implications for ocean acidification. Limnol. Oceanogr. 58, 131–143 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Burdige, D. J. & Zimmerman, R. C. Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnol. Oceanogr. 47, 1751–1763 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Chou, W.-C. et al. A Unique Diel Pattern in Carbonate Chemistry in the Seagrass Meadows of Dongsha 1 Island: implications for ocean acidification buffering. ESSOAr. https://doi.org/10.1002/essoar.10504715.1 (2020).

  • 36.

    Su, J. et al. Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling. Nat. Geosci. 13, 441–447 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 37.

    Enríquez, S. & Schubert, N. Direct contribution of the seagrass Thalassia testudinum to lime mud production. Nat. Commun. 5, 3835 (2014).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 38.

    Currin, C., Brewer, J. & Delano, P. Tide Flat Microphytobenthos: Biomass Distribution, Community Composition and Trophic Role in a Macrotidal Alaskan Estuary (National Centers for Coastal Ocean Science, Beaufort, NC, 2002).

  • 39.

    Martin, S. et al. Comparison of Zostera marina and maerl community metabolism. Aquat. Bot. 83, 161–174 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 40.

    Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfield, I. & Castillo, K. D. Impacts of seawater saturation state (ΩA = 0.4–4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates. Geochim. Cosmochim. Acta 192, 318–337 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Brewer, P. G. & Goldman, J. C. Alkalinity changes generated by phytoplankton growth1. Limnol. Oceanogr. 21, 108–117 (1976).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 42.

    Gazeau, F., Urbini, L., Cox, T. E., Alliouane, S. & Gattuso, J.-P. Comparison of the alkalinity and calcium anomaly techniques to estimate rates of net calcification. Mar. Ecol. Prog. Ser. 527, 1–12 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 43.

    Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A. & Dickson, A. G. Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. Mar. Chem. 106, 287–300 (2007).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Cai, W.-J., Wang, Y. & Hodson, R. E. Acid-base properties of dissolved organic matter in the estuarine waters of Georgia, USA. Geochim. Cosmochim. Acta 62, 473–483 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Ko, Y. H., Lee, K., Eom, K. H. & Han, I.-S. Organic alkalinity produced by phytoplankton and its effect on the computation of ocean carbon parameters. Limnol. Oceanogr. 61, 1462–1471 (2016).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Invers, O., Zimmerman, R. C., Alberte, R. S., Pérez, M. & Romero, J. Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabiting temperate waters. J. Exp. Mar. Biol. Ecol. 265, 203–217 (2001).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Sand-Jensen, K. & Gordon, D. M. Differential ability of marine and freshwater macrophytes to utilize HCO3 and CO2. Mar. Biol. 80, 247–253 (1984).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Larkum, A. W. D., Davey, P. A., Kuo, J., Ralph, P. J. & Raven, J. A. Carbon-concentrating mechanisms in seagrasses. J. Exp. Bot. 68, 3773–3784 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Rubio, L. et al. Direct uptake of HCO3- in the marine angiosperm Posidonia oceanica (L.) Delile driven by a plasma membrane H+ economy. Plant Cell Environ. 40, 2820–2830 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Fernández, J. A., García-Sánchez, M. J. & Felle, H. H. Physiological evidence for a proton pump and sodium exclusion mechanisms at the plasma membrane of the marine angiosperm Zostera marina L. J. Exp. Bot. 50, 1763–1768 (1999).

    Google Scholar 

  • 51.

    Berg, P. et al. Dynamics of benthic metabolism, O2, and pCO2 in a temperate seagrass meadow. Limnol. Oceanogr. 64, 2586–2604 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 52.

    Buapet, P., Rasmusson, L. M., Gullstrom, M. & Bjork, M. Photorespiration and carbon limitation determine productivity in temperate seagrasses. PLoS ONE 8, e83804 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Garcı́a-Sánchez, M. J., Jaime, M. P., Ramos, A., Sanders, D. & Fernández, J. ,. Sodium-dependent nitrate transport at the plasma membrane of leaf cells of the marine higher plant Zostera marina L. Plant Physiol. 122, 879–886 (2000).

    Article 

    Google Scholar 

  • 54.

    Drechsler, Z. & Beer, S. Utilization of inorganic carbon by Ulva lactuca. Plant Physiol. 97, 1439–1444 (1991).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Ribas-Ribas, M. et al. Effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja California. Estuar. Coast. Shelf Sci. 95, 367–376 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 56.

    Omarjee, A., Taljaard, S., Weerts, S. P. & Adams, J. B. The influence of mouth status on pH variability in small temporarily closed estuaries. Estuar. Coast. Shelf Sci. 246, 107043 (2020).

    CAS 
    Article 

    Google Scholar 

  • 57.

    McCutcheon, M. R., Staryk, C. J. & Hu, X. Characteristics of the carbonate system in a semiarid estuary that experiences summertime hypoxia. Estuaries Coasts. 42, 1509–1523 (2019).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Miller, C. A. & Kelley, A. L. Seasonality and biological forcing modify the diel frequency of nearshore pH extremes in a subarctic Alaskan estuary. Limnol. Oceanogr. 66, 1475–1491 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 59.

    Moxham, R. M. & Nelson, A. E. Trace Elements Reconnaissance in the Jakolof Bay Area, Southern Alaska (United States Department of Interior, Geological Survey, 1950).

  • 60.

    Hartwell, S. I., Dasher, D. & Lomax, T. Characterization of Benthic Habitats and Contaminant Assessment in Kenai Peninsula Fjords and Bays (NOAA Technical Memorandum NOS NCCOS, 2016).

  • 61.

    Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Dickson, A. Thermodynamics of the Dissociation of Boric-Acid in Synthetic Seawater from 273.15-K to 318.15-K. Deep-Sea Res. Part Oceanogr. Res. Pap. 37, 755–766 (1990).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 63.

    Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).

    ADS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma

    Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass