Geist, J. Integrative freshwater ecology and biodiversity conservation. Ecol. Indic. 11, 1507–1516 (2011).
Google Scholar
Lopes-Lima, M. et al. Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biol. Rev. 92, 572–607 (2017).
Google Scholar
Geist, J. Strategies for the conservation of endangered freshwater pearl mussels (Margaritifera margaritifera L.): A synthesis of conservation genetics and ecology. Hydrobiologia 644, 69–88 (2010).
Google Scholar
Taeubert, J. E. & Geist, J. The relationship between the freshwater pearl mussel (Margaritifera margaritifera) and its hosts. Biol. Bull. 44, 67–73 (2017).
Google Scholar
Salonen, J. K. et al. Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) differ in their suitability as a host for the endangered freshwater pearl mussel (Margaritifera margaritifera) in northern Fennoscandian rivers. Freshw. Biol. 62, 1346–1358 (2017).
Google Scholar
Geist, J. & Auerswald, K. Physicochemical stream bed characteristics and recruitment of the freshwater pearl mussel (Margaritifera margaritifera). Freshw. Biol. 52, 2299–2316 (2007).
Google Scholar
Stoeckl, K., Denic, M. & Geist, J. Conservation status of two endangered freshwater mussel species in Bavaria, Germany: Habitat quality, threats, and implications for conservation management. Aquat. Conserv. 30, 647–661 (2020).
Google Scholar
Auerswald, K. & Geist, J. Extent and cause of siltation in a headwater stream bed: Catchment and soil erosion is less important than internal stream processes. Land Degrad. Dev. 29, 737–748. https://doi.org/10.1002/ldr.2779 (2018).
Google Scholar
Bauer, G. Threats to the freshwater pearl mussel Margaritifera margaritifera L. in central Europe. Biol. Conserv. 45, 239–253 (1988).
Google Scholar
Boon, P. J. et al. Developing a standard approach for monitoring freshwater pearl mussel (Margaritifera margaritifera) populations in European rivers. Aquat. Conserv. 29, 1365–1379 (2019).
Google Scholar
Hruska, J. Nahrungsansprüche der Flußperlmuschel und deren halbnatürliche Aufzucht in der Tschechischen Republik (Dietary requirements and semi-natural rearing of freshwater pearl mussel in the Czech Republic). Heldia 4, 69–79 (1999).
Preston, S. J., Keys, A. & Roberts, D. Culturing freshwater pearl mussel Margaritifera margaritifera: A breakthrough in the conservation of an endangered species. Aquat. Conserv. 17, 539–549. https://doi.org/10.1002/aqc.799 (2007).
Google Scholar
Thomas, G. R., Taylor, J. & de Leaniz, C. G. Captive breeding of the endangered freshwater pearl mussel, Margaritifera margaritifera. Endanger. Species Res. 12, 1–9 (2010).
Google Scholar
Gum, B., Lange, M. & Geist, J. A critical reflection on the success of rearing and culturing juvenile freshwater mussels with a focus on the endangered freshwater pearl mussel (Margaritifera margaritifera L.). Aquat. Conserv. 21, 743–751 (2011).
Google Scholar
Geist, J., Rottmann, O., Schröder, W. & Kühn, R. Development of microsatellite markers for the endangered freshwater pearl mussel Margaritifera margaritifera L. (Bivalvia: Unionoidea). Mol. Ecol. Resour. 3, 444–446 (2003).
Google Scholar
Geist, J. & Kühn, R. Genetic diversity and differentiation of central European freshwater pearl mussel (Margaritifera margaritifera L.) populations: Implications for conservation and management. Mol. Ecol. 14, 425–439 (2005).
Google Scholar
Geist, J. & Kuehn, R. Host-parasite interactions in oligotrophic stream ecosystems: The roles of life history strategy and ecological niche. Mol. Ecol. 17, 997–1008 (2008).
Google Scholar
Marchordom, A., Araujo, R., Erpenbeck, D. & Ramos, M. A. Phylogeography and conservation genetics of the endangered European Margaritiferidae (Bivalvia: Unionoidea). Biol. J. Linn. Soc. Lond. 78, 235–252 (2003).
Google Scholar
Stoeckle, et al. Strong genetic differentiation and low genetic diversity of the freshwater pearl mussel (Margaritifera margaritifera L.) in the southwestern European distribution range. Conserv. Genet. 18, 147–157 (2017).
Google Scholar
Karlsson, S., Larsen, B. M. & Hindar, K. Host-dependent genetic variation in freshwater pearl mussel (Margaritifera margaritifera L.). Hydrobiologia 735, 179–190 (2014).
Google Scholar
Geist, J., Söderberg, H., Karlberg, A. & Kuehn, R. Drainage-independent genetic structure and high genetic diversity of endangered freshwater pearl mussels (Margaritifera margaritifera) in northern Europe. Conserv. Genet. 11, 1339–1350 (2010).
Google Scholar
Geist, et al. Genetic structure of Irish freshwater pearl mussels (Margaritifera margaritifera and Margaritifera durrovensis): Validity of subspecies, roles of host fish, and conservation implications. Aquat. Conserv. 28, 923–933 (2018).
Google Scholar
Zanatta, et al. High genetic diversity and low differentiation in North American Margaritifera margaritifera (Bivalvia: Unionida: Margaritiferidae). Biol. J. Linn. Soc. Lond. 123, 850–863 (2018).
Google Scholar
Taeubert, J. E., Denic, M., Gum, B., Lange, M. & Geist, J. Suitability of different salmonid strains as hosts for the endangered freshwater pearl mussel (Margaritifera margaritifera). Aquat. Conserv. 20, 728–734 (2010).
Google Scholar
Marwaha, et al. Host (Salmo trutta) age influences resistance to infestation by freshwater pearl mussel (Margaritifera margaritifera) glochidia. Parasitol. Res. 118, 1519–1532 (2019).
Google Scholar
Taeubert, J. E., Gum, B. & Geist, J. Variable development and excystment of freshwater pearl mussel (Margaritifera margaritifera L.) at constant temperature. Limnologica 43, 319–322 (2013).
Google Scholar
Taeubert, J. E. & Geist, J. Critical swimming speed of brown trout (Salmo trutta) infested with freshwater pearl mussel (Margaritifera margaritifera) glochidia and implications for artificial breeding of an endangered mussel species. Parasitol. Res. 112, 1607–1613 (2013).
Google Scholar
Marwaha, J., Jensen, K. H., Jakobsen, P. J. & Geist, J. Duration of the parasitic phase determines subsequent performance in juvenile freshwater pearl mussels (Margaritifera margaritifera). Ecol. Evol. 7, 1375–1383 (2017).
Google Scholar
Eybe, T., Thielen, F., Bohn, T. & Sures, B. Influence of the excystment time on the breeding success of juvenile freshwater pearl mussels (Margaritifera margaritifera). Aquat. Conserv. 25, 21–30 (2015).
Google Scholar
Denic, M., Taeubert, J. E. & Geist, J. Trophic relationships between the larvae of two freshwater mussels and their fish hosts. Invertebr. Biol. 134, 129–135 (2015).
Google Scholar
Denic, M. et al. Influence of stock origin and environmental conditions on the survival and growth of juvenile freshwater pearl mussels (Margaritifera margaritifera) in a cross-exposure experiment. Limnologica 50, 67–74 (2015).
Google Scholar
Hyvärinen, H. S. H., Chowdhury, M. M. R. & Taskinen, J. Pulsed flow-through cultivation of Margaritifera margaritifera: Effects of water source and food quantity on the survival and growth of juveniles. Hydrobiologia. 3219–3229 (2021).
Hyvärinen, H., Saarinen-Valta, M., Mäenpää, E. & Taskinen, J. Effect of substrate particle size on burrowing of the juvenile freshwater pearl mussel Margaritifera margaritifera. Hydrobiologia https://doi.org/10.1007/s10750-021-04522-z (2021).
Google Scholar
Taskinen, J. et al. Effect of pH, iron and aluminum on survival of early life history stages of the endangered freshwater pearl mussel, Margaritifera margaritifera. Toxicol. Environ. Chem. 93, 1764–1777 (2011).
Google Scholar
Lavictoire, L., Moorkens, E., Ramsay, A. & Sweeting, R. Effects of substrate size and cleaning regime on growth and survival of captive-bred juvenile freshwater pearl mussels, Margaritifera margaritifera (Linnaeus, 1758). Hydrobiologia 766, 89–102 (2016).
Google Scholar
Eybe, T., Thielen, F., Bohn, T. & Sures, B. The first millimetre: Rearing juvenile freshwater pearl mussels (Margaritifera margaritifera L.) in plastic boxes. Aquat. Conserv. 23, 964–975 (2013).
Google Scholar
Strayer, D. L., Geist, J., Haag, W. R., Jackson, J. K. & Newbold, J. D. Essay: Making the most of recent advances in freshwater mussel propagation and restoration. Conserv. Sci. Pract. 1, e53. https://doi.org/10.1111/csp2.53 (2019).
Google Scholar
Patterson, M. A. et al. Freshwater Mussel Propagation for Restoration (Cambridge University Press, 2018).
Google Scholar
Gstöttenmayr, D., Scheder, C. & Gumpinger, C. Conservation de la mulette perlière d’eau douce en Autriche: un système d’élevage contrôlé en progrès. Penn ar Bed 222, 45–49 (2015).
Gumpinger, C., Pichler-Scheder, C. & Huemer, D. Das oberösterreichische Artenschutzprojekt „Vision Flussperlmuschel“. Österreichs Fischerei 69, 259–273 (2016).
Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223–225 (1989).
Google Scholar
DeWoody, J. A. et al. Universal method for producing ROXlabeled size standards suitable for automated genotyping. Biotechniques 37, 348–352. https://doi.org/10.2144/04373BM02 (2004).
Google Scholar
Goudet, J. Fstat (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86, 485–486 (1995).
Rousset, F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).
Google Scholar
Haldane, J. B. S. An exact test for randomness of mating. J. Genet. 52, 631–635. https://doi.org/10.1007/BF02981502 (1954).
Google Scholar
Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
Google Scholar
Guo, S. W. & Thompson, E. A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48, 361–372 (1992).
Google Scholar
Raymond, M. & Rousset, F. An exact test for population differentiation. Evolution 49, 1280–1283 (1995).
Google Scholar
Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).
Google Scholar
Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).
Google Scholar
Ciofi, C., Beaumont, M. A., Swingland, I. R. & Bruford, M. W. Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proc. Royal Soc. B 266, 2269–2274 (1999).
Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
Google Scholar
Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).
Google Scholar
Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
Google Scholar
Rosenberg, N. A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).
Google Scholar
Kalinowski, S. T. The computer program STRUCTURE does not reliably identify the main genetic clusters within species: Simulations and implications for human population structure. Heredity 106, 625–632 (2011).
Google Scholar
Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).
Google Scholar
Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/ (2019).
Trushenski, J. T., Whelan, G. E. & Bowker, J. D. Why keep hatcheries? Weighing the economic cost and value of fish production for public use and public trust purposes. Fisheries 43, 285–293 (2018).
Wacker, S., Larsen, B. M., Jakobsen, P. & Karlsson, S. High levels of multiple paternity in a spermcast mating freshwater mussel. Ecol. Evol. 8, 8126–8134 (2018).
Google Scholar
Wacker, S., Larsen, B. M., Jakobsen, P. & Karlsson, S. Multiple paternity promotes genetic diversity in captive breeding of a freshwater mussel. Glob. Ecol. Conserv. 17, e00564. https://doi.org/10.1016/j.gecco.2019.e00564 (2019).
Google Scholar
Garrison, N. L., Johnson, P. D. & Whelan, N. V. Conservation genomics reveals low genetic diversity and multiple parentage in the threatened freshwater mussel, Margaritifera hembeli. Conserv. Genet. https://doi.org/10.1007/s10592-020-01329-8 (2021).
Google Scholar
Bauer, G. Reproductive strategy of the freshwater pearl mussel Margaritifera margaritifera. J. Anim. Ecol. 56, 691–704 (1987).
Google Scholar
McMurray, S. E. & Roe, K. J. Perspectives on the controlled propagation, augmentation, and reintroduction of freshwater mussels (Mollusca: Bivalvia: Unionoida). Freshw. Mollusk Biol. Conserv. 20, 1–12 (2017).
Google Scholar
Geist, J. Seven steps towards improving freshwater conservation. Aquat. Conserv. 25, 447–453 (2015).
Google Scholar
Source: Ecology - nature.com