in

Rice paddy soils are a quantitatively important carbon store according to a global synthesis

  • 1.

    Batjes, N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 65, 10–21 (1996).

    Article 
    CAS 

    Google Scholar 

  • 2.

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Buringh, P. in The role of terrestrial vegetation in the global carbon cycle: Measurement by remote sensing, 91–109 (Wiley, 1984).

  • 4.

    Hiederer, R. & Köchy, M. Global soil organic carbon estimates and the harmonized world soil database. EUR 79, 25225 (2011).

    Google Scholar 

  • 5.

    Smith, P. et al. Global change pressures on soils from land use and management. Glob. Chang. Biol. 22, 1008–1028 (2016).

    Article 

    Google Scholar 

  • 6.

    Schlesinger, W. H. The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing (Wiley, 1984).

  • 7.

    Conant, R. T., Cerri, C. E., Osborne, B. B. & Paustian, K. Grassland management impacts on soil carbon stocks: a new synthesis. Ecol. Appl. 27, 662–668 (2017).

    Article 

    Google Scholar 

  • 8.

    Köchy, M., Hiederer, R. & Freibauer, A. Global distribution of soil organic carbon–Part 1: masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1, 351–365 (2015).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Nahlik, A. M. & Fennessy, M. S. Carbon storage in US wetlands. Nat. Commun. 7, 1–9 (2016).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Chang. 7, 523–528 (2017).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Maclean, J. L., Dawe, D. C., Hardy, B. & Hettel, G. P. Rice Almanac: Source book for the most important economic activity on earth, 3rd edn. (CABI Publishing, 2002).

  • 13.

    Kögel-Knabner, I. et al. Biogeochemistry of paddy soils. Geoderma 157, 1–14 (2010).

    Article 
    CAS 

    Google Scholar 

  • 14.

    Wu, J. Carbon accumulation in paddy ecosystems in subtropical China: evidence from landscape studies. Eur. J. Soil Sci. 62, 29–34 (2011).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Chang. 7, 63–68 (2017).

    CAS 
    Article 

    Google Scholar 

  • 16.

    FAO (Food and Agriculture Organization of the United Nations). FAOSTAT: FAO Statistical Databases. http://faostat.fao.org/default.aspx (2018).

  • 17.

    Gattinger, A. et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl Acad. Sci. USA 109, 18226–18231 (2012).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Xie, Z. et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob. Chang. Biol. 13, 1989–2007 (2007).

    Article 

    Google Scholar 

  • 19.

    Qin, Z., Huang, Y. & Zhuang, Q. Soil organic carbon sequestration potential of cropland in China. Glob. Biogeochem. Cycles 27, 711–722 (2013).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

    Article 

    Google Scholar 

  • 21.

    Haefele, S. M., Nelson, A. & Hijmans, R. J. Soil quality and constraints in global rice production. Geoderma 235, 250–259 (2014).

    Article 
    CAS 

    Google Scholar 

  • 22.

    Pan, G., Li, L., Wu, L. & Zhang, X. Storage and sequestration potential of topsoil organic carbon in China’s paddy soils. Glob. Chang. Biol. 10, 79–92 (2004).

    Article 

    Google Scholar 

  • 23.

    Wei, L. et al. Comparing carbon and nitrogen stocks in paddy and upland soils: Accumulation, stabilization mechanisms, and environmental drivers. Geoderma 398, 115121 (2021).

    Article 

    Google Scholar 

  • 24.

    Wang, P. et al. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence. Sci. Rep. 5, 15704 (2015).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Li, Y. et al. Oxygen availability determines key regulators in soil organic carbon mineralisation in paddy soils. Soil Biol. Biochem. 153, 108106 (2021).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Evans, C. D. et al. Acidity controls on dissolved organic carbon mobility in organic soils. Glob. Chang. Biol. 18, 3317–3331 (2012).

    Article 

    Google Scholar 

  • 27.

    Liu, Y. et al. Impact of prolonged rice cultivation on coupling relationship among C, Fe, and Fe-reducing bacteria over a 1000-year paddy soil chronosequence. Biol. Fertil. Soils 55, 589–602 (2019).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).

    Article 

    Google Scholar 

  • 29.

    Liu, Y. et al. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation. Biogeosciences 13, 6565–6586 (2016).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Liu, Y. et al. Methanogenic abundance and changes in community structure along a rice soil chronosequence from east China. Eur. J. Soil Sci. 67, 443–455 (2016).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Malik, A. A. et al. Land use driven change in soil pH affects microbial carbon cycling processes. Nat. Commun. 9, 1–10 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Don, A., Schumacher, J. & Freibauer, A. Impact of tropical land‐use change on soil organic carbon stocks-a meta‐analysis. Glob. Chang. Biol. 17, 1658–1670 (2011).

    Article 

    Google Scholar 

  • 33.

    Piao, S. et al. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013 (2009).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Kirk, G. The Biogeochemistry of Submerged Soils (Wiley, 2004).

  • 36.

    Kramer, M. G., Sanderman, J., Chadwick, O. A., Chorover, J. & Vitousek, P. M. Long‐term carbon storage through retention of dissolved aromatic acids by reactive particles in soil. Glob. Chang. Biol. 18, 2594–2605 (2012).

    Article 

    Google Scholar 

  • 37.

    Scharpenseel, H. W., Pfeiffer, E. M. & Becker-Heidmann, P. in Advances in Soil Science (eds. Carter, MR, Stewart, BA) (Lewis Publishers, 1996).

  • 38.

    Liao, Q. et al. Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Glob. Chang. Biol. 15, 861–875 (2009).

    Article 

    Google Scholar 

  • 39.

    Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1–10 (2017).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Ghimire, R., Lamichhane, S., Acharya, B. S., Bista, P. & Sainju, U. M. Tillage, crop residue, and nutrient management effects on soil organic carbon in rice-based cropping systems: a review. J. Integr. Agric. 16, 1–15 (2017).

    Article 

    Google Scholar 

  • 41.

    Maillard, É. & Angers, D. A. Animal manure application and soil organic carbon stocks: a meta‐analysis. Glob. Chang. Biol. 20, 666–679 (2014).

    Article 

    Google Scholar 

  • 42.

    Tian, K. et al. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agric. Ecosyst. Environ. 204, 40–50 (2015).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Liu, Y. et al. Initial utilization of rhizodeposits with rice growth in paddy soils: rhizosphere and N fertilization effects. Geoderma 338, 30–39 (2019).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Chen, J. et al. A keystone microbial enzyme for nitrogen control of soil carbon storage. Sci. Adv. 4, eaaq1689 (2018).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Zhu, Z. et al. Rice rhizodeposits affect organic matter decomposition in paddy soil: the role of N fertilization and rice growth for enzyme activities, CO2 and CH4 emissions. Soil Biol. Biochem. 116, 369–377 (2018).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Moorhead, D. L. & Sinsabaugh, R. L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76, 151–174 (2006).

    Article 

    Google Scholar 

  • 47.

    Li, X. et al. Nitrogen fertilization decreases the decomposition of soil organic matter and plant residues in planted soils. Soil Biol. Biochem. 112, 47–55 (2017).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Cui, J. et al. Carbon and nitrogen recycling from microbial necromass to cope with C:N stoichiometric imbalance by priming. Soil Biol. Biochem. 142, 107720 (2020).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Geisseler, D., Linquist, B. A. & Lazicki, P. A. Effect of fertilization on soil microorganisms in paddy rice systems—a meta-analysis. Soil Biol. Biochem. 115, 452–460 (2017).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Sun, W. et al. Climate drives global soil carbon sequestration and crop yield changes under conservation agriculture. Glob. Chang. Biol. 26, 3325–3335 (2020).

    Article 

    Google Scholar 

  • 51.

    Wissing, L. et al. Management-induced organic carbon accumulation in paddy soils: the role of organo-mineral associations. Soil Tillage Res. 126, 60–71 (2013).

    Article 

    Google Scholar 

  • 52.

    Baker, J. M., Ochsner, T. E., Venterea, R. T. & Griffis, T. J. Tillage and soil carbon sequestration—-what do we really know? Agric. Ecosyst. Environ. 118, 1–5 (2007).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Lal, R. Challenges and opportunities in soil organic matter research. Eur. J. Soil Sci. 60, 158–169 (2009).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Lal, R. Soil carbon sequestration in India. Clim. Change 65, 277–296 (2004).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Liu, Y. et al. Carbon input and allocation by rice into paddy soils: a review. Soil Biol. Biochem. 133, 97–107 (2019).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Zhao, Y. et al. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Wei, X., Zhu, Z., Wei, L., Wu, J. & Ge, T. Biogeochemical cycles of key elements in the paddy-rice rhizosphere: microbial mechanisms and coupling processes. Rhizosphere 10, 100145 (2019).

    Article 

    Google Scholar 

  • 58.

    Alexandratos, N. & Bruinsma, J. World agriculture towards 2030/2050: the 2012 revision. https://doi.org/10.22004/ag.econ.288998. (2012).

  • 59.

    Rui, W. & Zhang, W. Effect size and duration of recommended management practices on carbon sequestration in paddy field in Yangtze Delta Plain of China: a meta-analysis. Agric. Ecosyst. Environ. 135, 199–205 (2010).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Song, K. et al. Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China. Environ. Manage. 54, 255–271 (2014).

    Article 

    Google Scholar 

  • 61.

    Dong, J. et al. Northward expansion of paddy rice in northeastern Asia during 2000–2014. Geophys. Res. Lett. 43, 3754–3761 (2016).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Chaturvedi, V. et al. Climate mitigation policy implications for global irrigation water demand. Mitig. Adapt. Strat. Glob. Chang. 20, 389–407 (2015).

    Article 

    Google Scholar 

  • 63.

    Gathorne-Hardy, A. A life cycle assessment (LCA) of greenhouse gas emissions from SRI and flooded rice production in SE India. Taiwan Water Conserv. J. 61, 111–125 (2013).

    Google Scholar 

  • 64.

    Linquist, B., Van Groenigen, K. J., Adviento‐Borbe, M. A., Pittelkow, C. & Van Kessel, C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Chang. Biol. 18, 194–209 (2012).

    Article 

    Google Scholar 

  • 65.

    IPCC. in Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. (eds. Field, C. B. et al) (Cambridge University Press, 2014).

  • 66.

    Xie, Z. et al. CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern. Sci. China Earth Sci. 53, 1351–1357 (2010).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Yan, X. et al. Carbon sequestration efficiency in paddy soil and upland soil under long-term fertilization in southern China. Soil Tillage Res. 130, 42–51 (2013).

    Article 

    Google Scholar 

  • 68.

    Shang, Q. et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice‐cropping systems: a 3‐year field measurement in long‐term fertilizer experiments. Glob. Chang. Biol. 17, 2196–2210 (2011).

    Article 

    Google Scholar 

  • 69.

    Ma, Y. et al. Net global warming potential and greenhouse gas intensity of annual rice–wheat rotations with integrated soil–crop system management. Agric. Ecosyst. Environ. 164, 209–219 (2013).

    Article 

    Google Scholar 

  • 70.

    Xiong, Z. et al. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China. Sci. Rep. 5, 1–9 (2015).

    CAS 

    Google Scholar 

  • 71.

    Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eaau9038 (2019).

    Article 
    CAS 

    Google Scholar 

  • 72.

    Liu, C., Lu, M., Cui, J., Li, B. & Fang, C. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta‐analysis. Glob. Chang. Biol. 20, 1366–1381 (2014).

    Article 

    Google Scholar 

  • 73.

    Shakoor, A. et al. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total Environ. 750, 142299 (2021).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Zhao, X. et al. Methane and nitrous oxide emissions under no‐till farming in China: a meta‐analysis. Glob. Chang. Biol. 22, 1372–1384 (2016).

    Article 

    Google Scholar 

  • 75.

    Kim, S. Y., Gutierrez, J. & Kim, P. J. Unexpected stimulation of CH4 emissions under continuous no-tillage system in mono-rice paddy soils during cultivation. Geoderma 267, 34–40 (2016).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Ball, B. C., Scott, A. & Parker, J. P. Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland. Soil Tillage Res. 53, 29–39 (1999).

    Article 

    Google Scholar 

  • 77.

    Linquist, B. A., Adviento-Borbe, M. A., Pittelkow, C. M., van Kessel, C. & van Groenigen, K. J. Fertilizer management practices and greenhouse gas emissions from rice systems: a quantitative review and analysis. Field Crop. Res. 135, 10–21 (2012).

    Article 

    Google Scholar 

  • 78.

    Schlesinger, W. H. Carbon sequestration in soils: some cautions amidst optimism. Agric. Ecosyst. Environ. 82, 121–127 (2000).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Choudhury, A. T. M. A. & Kennedy, I. R. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems. Commun. Soil Sci. Plan. 36, 1625–1639 (2005).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crop. Res. 234, 47–54 (2019).

    Article 

    Google Scholar 

  • 81.

    Suryavanshi, P., Singh, Y. V., Prasanna, R., Bhatia, A. & Shivay, Y. S. Pattern of methane emission and water productivity under different methods of rice crop establishment. Paddy Water Environ. 11, 321–329 (2013).

    Article 

    Google Scholar 

  • 82.

    Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003299 (2009).

  • 83.

    Jiang, Y. et al. Higher yields and lower methane emissions with new rice cultivars. Glob. Chang. Biol. 23, 4728–4738 (2017).

    Article 

    Google Scholar 

  • 84.

    Li, C. et al. Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Glob. Biogeochem. Cycles https://doi.org/10.1029/2003GB002045 (2004).

  • 85.

    Yin, S. et al. Carbon sequestration and emissions mitigation in paddy fields based on the DNDC model: a review. Artif. Intell. Agric. 4, 140–149 (2020).

    Google Scholar 

  • 86.

    FAO, IIASA, ISRIC, ISSCAS, and JRC: Harmonized World Soil Database (version 1.2), Tech. Rep., FAO, Rome, Italy and IIASA, Laxenburg, Austria (2012).

  • 87.

    Allison, L. in Organic carbon. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, (ed. A.g. Norman). (American Society of Agronomy, 1965).

  • 88.

    Fang, C. & Moncrieff, J. B. The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant Soil 268, 243–253 (2005).

    CAS 
    Article 

    Google Scholar 

  • 89.

    Yan, X., Cai, Z., Wang, S. & Smith, P. Direct measurement of soil organic carbon content change in the croplands of China. Glob. Chang. Biol. 17, 1487–1496 (2011).

    Article 

    Google Scholar 

  • 90.

    Rosenberg, M. S., Adams, D. C. & Gurevitch, J. MetaWin 2.0: statistical software for meta-analysis (Sinauer, 2000).

  • 91.

    Yue, Q. et al. Deriving emission factors and estimating direct nitrous oxide emissions for crop cultivation in China. Environ. Sci. Technol. 53, 10246–10257 (2019).

    CAS 
    Article 

    Google Scholar 

  • 92.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta‐analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Article 

    Google Scholar 

  • 93.

    Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta‐analysis of ecological data. Ecology 78, 1277–1283 (1997).

    Article 

    Google Scholar 

  • 94.

    Van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Will yield gains be lost to disease?

    Principles, drivers and opportunities of a circular bioeconomy