in

Bioclimatic and anthropogenic variables shape the occurrence of Batrachochytrium dendrobatidis over a large latitudinal gradient

  • 1.

    Collins, J. P., & Crump, M. L. Extinction in Our Times: Global Amphibian Decline. (2009).

  • 2.

    Catenazzi, A. State of the world’s amphibians. Annu. Rev. Environ. Resour. 40, 91–119 (2015).

    Article 

    Google Scholar 

  • 3.

    González-del-Pliego, P. et al. Phylogenetic and trait-based prediction of extinction risk for data deficient amphibians. Curr. Biol. 29, 1557–1563 (2019).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 4.

    Lips, K. R. et al. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. PNAS 102, 3165–3170 (2006).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 5.

    Lips, K. R., Diffendorfer, J., Mendelson, J. R. & Sears, M. W. Riding the wave: Reconciling the roles of disease and climate change in amphibian declines. PLoS Biol. 6, e72 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Berger, L. et al. Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. PNAS 95, 9031–9036 (1998).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Longcore, J. E., Pessier, A. P. & Nichols, D. K. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia 91, 219–227 (1999).

    Article 

    Google Scholar 

  • 8.

    Berger, L. et al. History and recent progress on chytridiomycosis in amphibians. Fungal Ecol. 19, 89–99 (2016).

    Article 

    Google Scholar 

  • 9.

    Martel, A. et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. PNAS 110, 15325–15329 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Lambert, M. R. et al. Comment on “Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity”. Science https://doi.org/10.1126/science.aay1838 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Scheele, B. C. et al. Response to Comment on “Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity”. Science https://doi.org/10.1126/science.aay2905 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Puschendorf, R. et al. Distribution models for the amphibian chytrid Batrachochytrium dendrobatidis in Costa Rica: Proposing climatic refuges as a conservation tool. Divers. Distrib. 15, 401–408 (2009).

    Article 

    Google Scholar 

  • 14.

    Zumbado-Ulate, H. et al. Endemic infection of Batrachochytrium dendrobatidis in Costa Rica: Implications for amphibian conservation at regional and species level. Diversity 11, 129 (2019).

    Article 

    Google Scholar 

  • 15.

    Crawford, A. J., Lips, K. R. & Bermingham, E. Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. PNAS 107, 13777–13782 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Woodhams, D. C. et al. Chytridiomycosis and amphibian population declines continue to spread eastward in Panama. EcoHealth 5, 268–274 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Catenazzi, A., Lehr, E., Rodriguez, L. & Vredenburg, V. Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the upper Manu National Park, southeastern Peru. Conserv. Biol. 25, 382–391 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Voyles, J. et al. Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science 326, 582–585 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    James, T. et al. Disentangling host, pathogen, and environmental determinants of a recently emerged wildlife disease: Lessons from the first 15 years of amphibian chytridiomycosis research. Ecol. Evol. 5, 4079–4097 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Soto-Azat, C. et al. Xenopus laevis and emerging amphibian pathogens in Chile. EcoHealth 13, 775–783 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Ron, S. Predicting the distribution of the amphibian pathogen Batrachochytrium dendrobatidis in the new world. Biotropica 37, 209–221 (2005).

    Article 

    Google Scholar 

  • 22.

    Rödder, D., Kielgast, J. & Lötters, S. Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change. Dis. Aquat. Org. 92, 201–207 (2010).

    Article 

    Google Scholar 

  • 23.

    Murray, K. A. et al. Assessing spatial patterns of disease risk to biodiversity: Implications for the management of the amphibian pathogen, Batrachochytrium dendrobatidis. J. Appl. Ecol. 48, 163–173 (2011).

    Article 

    Google Scholar 

  • 24.

    Liu, X., Rohr, J. & Li, Y. Climate, vegetation, introduced hosts and trade shape a global wildlife pandemic. Proc. Biol. Sci. 280, 20122506 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Olson, D. H. et al. Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE 8, e56802 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Penner, J. et al. West Africa—A safe haven for frogs? A sub-continental assessment of the chytrid fungus (Batrachochytrium dendrobatidis). PLoS ONE 8, e56236 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Xie, G. Y., Olson, D. H. & Blaustein, A. R. Projecting the global distribution of the emerging amphibian fungal pathogen, Batrachochytrium dendrobatidis, based on IPCC climate futures. PLoS ONE 11, e0160746 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Searle, C. L. et al. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen. Conserv. Biol. 25, 965–974 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Farrer, R. et al. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. PNAS 108, 18732–18736 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Lips, K. R. Overview of chytrid emergence and impacts on amphibians. Philos. Trans. R. Soc. B. 371, 20150465 (2016).

    Article 

    Google Scholar 

  • 32.

    Bolom-Huet, R., Pineda, E., Díaz-Fleischer, F., Muñoz-Alonso, A. L. & Galindo-González, J. Known and estimated distribution in Mexico of Batrachochytrium dendrobatidis, a pathogenic fungus of amphibians. Biotropica 51, 731–746 (2019).

    Article 

    Google Scholar 

  • 33.

    Zumbado-Ulate, H., García-Rodríguez, A. & Searle, C. L. Species distribution models predict the geographic expansion of an enzootic amphibian pathogen. Biotropica 53, 221–231 (2021).

    Article 

    Google Scholar 

  • 34.

    Berger, L. et al. Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust. Vet. J. 82, 434–439 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Clare, F. C. et al. Climate forcing of an emerging pathogenic fungus across a montane multi-host community. Philos. Trans. R. Soc. B. 371, 20150454 (2016).

    Article 
    CAS 

    Google Scholar 

  • 36.

    Bacigalupe, L. D., Soto-Azat, C., García-Vera, C., Barría-Oyarzo, I. & Rezende, E. L. Effects of amphibian phylogeny, climate and human impact on the occurrence of the amphibian-killing chytrid fungus. Glob. Change Biol. 23, 3543–3553 (2017).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Raffel, T., Michel, P., Sites, W. & Rohr, J. What drives chytrid infections in newt populations? Associations with substrate, temperature, and shade. EcoHealth 7, 526–536 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Hudson, M. et al. Reservoir frogs: Seasonality of Batrachochytrium dendrobatidis infection in robber frogs. PeerJ 7, e7021 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Kriger, K. M. & Hero, J. M. Large-scale seasonal variation in the prevalence and severity of chytridiomycosis. J. Zool. 271, 352–359 (2007).

    Google Scholar 

  • 41.

    Longo, A. V., Burrowes, P. A. & Joglar, R. L. Seasonality of Batrachochytrium dendrobatidis infection in direct-developing frogs suggests a mechanism for persistence. Dis. Aquat. Org. 92, 253–260 (2010).

    Article 

    Google Scholar 

  • 42.

    Zumbado-Ulate, H., Bolaños, F., Gutiérrez-Espeleta, G. & Puschendorf, R. Extremely low prevalence of Batrachochytrium dendrobatidis in frog populations from Neotropical dry forest of Costa Rica supports the existence of a climatic refuge from disease. EcoHealth 11, 593–602 (2014).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Bacigalupe, L. D. et al. The amphibian-killing fungus in a biodiversity hotspot: Identifying and validating high-risk areas and refugia. Ecosphere. 10, e02724 (2019).

    Article 

    Google Scholar 

  • 44.

    Flechas, S. V. et al. Current and predicted distribution of the pathogenic fungus Batrachochytrium dendrobatidis in Colombia, a hotspot of amphibian biodiversity. Biotropica 49, 685–694 (2017).

    Article 

    Google Scholar 

  • 45.

    Lampo, M. et al. Batrachochytrium dendrobatidis in Venezuela. Herpetol. Rev. 39, 449 (2008).

    Google Scholar 

  • 46.

    Valenzuela-Sánchez, A. et al. Genomic epidemiology of the emerging pathogen Batrachochytrium dendrobatidis from native and invasive amphibian species in Chile. Transbound. Emerg. Dis. 65, 309–314 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    O’Hanlon, S. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360, 621–627 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Soto-Azat, C. et al. The population decline and extinction of Darwin’s frogs. PLoS ONE 8, e66957 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Soto-Azat, C. et al. ASG Chile leads update of the extinction risk of Chilean amphibians for the IUCN red list of threatened speciesTM. FrogLog 23, 6–7 (2015).

    Google Scholar 

  • 50.

    Mora, M. et al. High abundance of invasive African clawed frog Xenopus laevis in Chile: Challenges for their control and updated invasive distribution. Manag. Biol. Invasions. 10, 377–388 (2019).

    Article 

    Google Scholar 

  • 51.

    Solís, R., Penna, M., De la Riva, I., Fisher, M. & Bosch, J. Presence of Batrachochytrium dendrobatdis in anurans from the Andes highlands of northern Chile. Herpetol. J. 24, 55–59 (2015).

    Google Scholar 

  • 52.

    Soto-Azat, C. et al. Is Chytridiomycosis driving Darwin’s frogs to extinction?. PLoS ONE 8, e79862 (2013).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 53.

    Valenzuela-Sánchez, A. et al. Cryptic disease-induced mortality may cause host extinction in an apparently stable host–parasite system. Proc. Biol. Sci. 284, 20171176 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Lips, K. R., Reeve, J. D. & Witters, L. R. Ecological traits predicting amphibian population declines in Central America. Conserv. Biol. 17, 1078–1088 (2003).

    Article 

    Google Scholar 

  • 55.

    Hero, J. M., Williams, S. E. & Magnusson, W. E. Ecological traits of declining amphibians in upland areas of eastern Australia. J. Zool. 267(3), 221–232 (2005).

    Article 

    Google Scholar 

  • 56.

    Kriger, K. M. & Hero, J. M. Altitudinal distribution of chytrid (Batrachochytrium dendrobatidis) infection in subtropical Australian frogs. Austral. Ecol. 33(8), 1022–1032 (2008).

    Article 

    Google Scholar 

  • 57.

    Skerratt, L. F. et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4, 125 (2007).

    Article 

    Google Scholar 

  • 58.

    Langwig, K. et al. Context-dependent conservation responses to emerging wildlife diseases. Front. Ecol. Environ. 13, 195–202 (2015).

    Article 

    Google Scholar 

  • 59.

    Shaw, S. D. et al. The distribution and host range of Batrachochytrium dendrobatidis in New Zealand, 1930–2010. Ecology 94, 2108–2111 (2013).

    Article 

    Google Scholar 

  • 60.

    Ghirardi, R. et al. Endangered amphibians infected with the chytrid fungus Batrachochytrium dendrobatidis in austral temperate wetlands from Argentina. Herpetol. J. 24, 129–133 (2014).

    Google Scholar 

  • 61.

    Bielby, J., Cooper, N., Cunningham, A., Garner, T. & Purvis, A. Predicting susceptibility to future declines in the world’s frogs. Conserv. Lett. 1, 82–90 (2008).

    Article 

    Google Scholar 

  • 62.

    Barrionuevo, S. & Mangione, S. Chytridiomycosis in two species of Telmatobius (Anura: Leptodactylidae) from Argentina. Dis. Aquat. Org. 73, 171–174 (2006).

    Article 

    Google Scholar 

  • 63.

    Seimon, T. A. et al. Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob. Change Biol. 13, 288–299 (2007).

    ADS 
    Article 

    Google Scholar 

  • 64.

    Burrowes, P. A. & De la Riva, I. Unraveling the historical prevalence of the invasive chytrid fungus in the Bolivian Andes: Implications in recent amphibian declines. Biol. Invasions. 19, 1781–1794 (2017).

    Article 

    Google Scholar 

  • 65.

    Vredenburg, V. T., Knapp, R., Tunstall, T. & Briggs, C. Dynamics of an emerging disease drive large-scale amphibian population extinctions. PNAS 107, 9689–9694 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Azat, C. et al. A flagship for Austral temperate forest conservation: an action plan for Darwin’s frogs bringing together key stakeholders. Oryx 55, 356–363 (2021).

    Article 

    Google Scholar 

  • 67.

    Pilliod, D. S. et al. Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads. Conserv. Biol. 24, 1259–1267 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Walker, S. F. et al. Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia. Ecol. Lett. 13, 372–382 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Kriger, K. M., Pereoglou, F. & Hero, J. M. Latitudinal variation in the prevalence and intensity of chytrid (Batrachochytrium dendrobatidis) infection in eastern Australia. Conserv. Biol. 21, 1280–1290 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Petersen, C. E., Lovich, R. E., Phillips, C. A., Dreslik, M. J. & Lannoo, M. J. Prevalence and seasonality of the amphibian chytrid fungus Batrachochytrium dendrobatidis along widely separated longitudes across the United States. EcoHealth 13, 368–382 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Thorpe, C. J. et al. Climate structuring of Batrachochytrium dendrobatidis infection in the threatened amphibians of the northern Western Ghats, India. R. Soc. Open Sci. 5, 180211 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Sonn, J. M., Utz, R. M. & Richards-Zawacki, C. L. Effects of latitudinal, seasonal, and daily temperature variations on chytrid fungal infections in a North American frog. Ecosphere 10, e02892 (2019).

    Article 

    Google Scholar 

  • 73.

    Raffel, T. R., Halstead, N. T., McMahon, T. A., Davis, A. K. & Rohr, J. R. Temperature variability and moisture synergistically interact to exacerbate an epizootic disease. Proc. Biol. Sci. 282, 20142039 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Woodhams, D. C. & Alford, R. A. Ecology of chytridiomycosis in rainforest stream frog assemblages of tropical Queensland. Conserv. Biol. 19, 1449–1459 (2005).

    Article 

    Google Scholar 

  • 75.

    Adams, M. J. et al. Using occupancy models to understand the distribution of an amphibian pathogen, Batrachochytrium dendrobatidis. Ecol. Appl. 20, 289–302 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Fisher, M., Garner, T. & Walker, S. F. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu. Rev. Microbiol. 63, 291–310 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 77.

    Schloegel, L. M. et al. Novel, panzootic and hybrid genotypes of amphibia chytridiomycosis associated with the bullfrog trade. Mol. Ecol. 21, 5162–5177 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 78.

    Wilson, E. A., Briggs, C. J. & Dudley, T. L. Invasive African clawed frogs in California: A reservoir for or predator against the chytrid fungus?. PLoS ONE 13, e0191537 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 79.

    Becker, C. G., Longo, A. V., Haddad, C. F. & Zamudio, K. R. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc. Biol. Sci. 284, 20170582 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    McCoy, K. A. & Peralta, A. L. Pesticides could alter amphibian skin microbiomes and the effects of Batrachochytrium dendrobatidis. Front. Microbiol. 9, 748 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Ellis, E. & Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).

    Article 

    Google Scholar 

  • 82.

    Rohr, J., Halstead, N. & Raffel, T. Modelling the future distribution of the amphibian chytrid fungus: The influence of climate and human-associated factors. J. Appl. Ecol. 48, 174–176 (2011).

    Article 

    Google Scholar 

  • 83.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Echeverria, C., Coomes, D., Hall, M. & Newton, A. Spatially explicit models to analyze forest loss and fragmentation between 1976 and 2020 in southern Chile. Ecol. Model. 212, 439–449 (2008).

    Article 

    Google Scholar 

  • 85.

    Rodriguez, D., Becker, C., Pupin, C., Haddad, F. & Zamudio, K. Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol. Ecol. 23, 774–787 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 86.

    Puschendorf, R., Hodgson, L., Alfors, R. A., Skerrat, L. F. & VanDerWal, J. Underestimated ranges and overlooked refuges from amphibian chytridiomycosis. Divers. Distrib. 19, 1313–1321 (2013).

    Article 

    Google Scholar 

  • 87.

    Scheele, B. C. et al. After the epidemic: Ongoing declines, stabilizations and recoveries in amphibians afflicted by chytridiomycosis. Biol. Conserv. 206, 37–46 (2017).

    Article 

    Google Scholar 

  • 88.

    Mendelson, J. R. III., Whitfield, S. M. & Sredl, M. J. A recovery engine strategy for amphibian conservation in the context of disease. Biol. Conserv. 236, 188–191 (2019).

    Article 

    Google Scholar 

  • 89.

    Van Rooij, P., Martel, A., Haesebrouck, F. & Pasmans, F. Amphibian chytridiomycosis: A review with focus on fungus-host interactions. Vet. Res. 46, 1–22 (2015).

    Article 
    CAS 

    Google Scholar 

  • 90.

    Christie, M. R. & Searle, C. L. Evolutionary rescue in a host–pathogen system results in coexistence not clearance. Evol. Appl. 11, 681–693 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 91.

    Bletz, M. C. et al. Mitigating amphibian chytridiomycosis with bioaugmentation: Characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16, 807–820 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Bosch, J. et al. Successful elimination of a lethal wildlife infectious disease in nature. Biol. Lett. 11, 20150874 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 93.

    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933–938 (2001).

    Article 

    Google Scholar 

  • 94.

    Pellet, J. & Schmidt, B. R. Monitoring distributions using call surveys: Estimating site occupancy, detection probabilities and inferring absence. Biol. Conserv. 123, 27–35 (2005).

    Article 

    Google Scholar 

  • 95.

    Drechsler, A. & Bock, D. Ortmann’s funnel trap—A highly efficient tool for monitoring amphibian species. Herpetol. Notes. 3, 13–21 (2010).

    Google Scholar 

  • 96.

    Hudson, M. et al. Dynamics and genetics of a disease-driven species decline to near extinction: Lessons for conservation. Sci. Rep. 6, 1–13 (2016).

    Article 
    CAS 

    Google Scholar 

  • 97.

    R Development Core Team. R: A Language and Environment for Statistical Computing, https://www.R-project.org/ (2019).

  • 98.

    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).

    Article 

    Google Scholar 

  • 99.

    Center for International Earth Science Information Network (CIESIN). Gridded Population of the World, Version 3 (GPWv3). https://doi.org/10.7927/H4639MPP (2005).

  • 100.

    Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: The first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Divers. Distrib. 20, 1–9 (2014).

    Article 

    Google Scholar 

  • 101.

    Center for International Earth Science Information Network (CIESIN). Gridded Species Distribution: Global Amphibian Richness Grids. https://doi.org/10.7927/H4RR1W66 (2015).

  • 102.

    Fick, S. & Hijmans, R. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 103.

    ASTER. ASTER global digital elevation model V003. https://doi.org/10.5067/ASTER/ASTGTM (2018).

  • 104.

    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2018).

  • 105.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article 

    Google Scholar 

  • 106.

    Fox, J. Effect displays in R for generalised linear models. J. Stat. Softw. 8, 1–27 (2003).

    Article 

    Google Scholar 

  • 107.

    Carpenter, T. E. Methods to investigate spatial and temporal clustering in veterinary epidemiology. Prev. Vet. Med. 48, 303–320 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 108.

    Kulldorff, M. A spatial scan statistic. Commun. Stat-Theor. M. 26, 1481–1496 (1997).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 109.

    Kulldorff, M. Information Management Services, Inc. SaTScanTM v.9.4.4: software for the spatial and space-time scan statistics. http://www.satscan.org (2009).


  • Source: Ecology - nature.com

    Phenotypic plasticity of fungal traits in response to moisture and temperature

    Body size dependent dispersal influences stability in heterogeneous metacommunities