in

Wavelet geographically weighted regression for spectroscopic modelling of soil properties

  • 1.

    Schmidt, M. W. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Drobnik, T., Greiner, L., Keller, A. & Grêt-Regamey, A. Soil quality indicators-from soil functions to ecosystem services. Ecol. Ind. 94, 151–169 (2018).

    Article 

    Google Scholar 

  • 3.

    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Viscarra Rossel, R. et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 155, 198–230 (2016).

  • 5.

    Amundson, R. & Biardeau, L. Opinion: Soil carbon sequestration is an elusive climate mitigation tool. Proc. Natl. Acad. Sci. 115, 11652–11656 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Smith, P. et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. 26, 219–241 (2020).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Zhang, S., Yu, Z., Lin, J. & Zhu, B. Responses of soil carbon decomposition to drying-rewetting cycles: A meta-analysis. Geoderma 361, 114069 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 8.

    Bot, A. & Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. 80 (Food & Agriculture Org., 2005).

  • 9.

    Rawles, W. J. & Brakensiek, D. Estimating soil water retention from soil properties. J. Irrig. Drain. Div. 108, 166–171 (1982).

    Article 

    Google Scholar 

  • 10.

    Zhao, D., Zhao, X., Khongnawang, T., Arshad, M. & Triantafilis, J. A Vis–NIR spectral library to predict clay in Australian cotton growing soil. Soil Sci. Soc. Am. J. 82, 1347–1357 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 11.

    Demattê, J. A., Campos, R. C., Alves, M. C., Fiorio, P. R. & Nanni, M. R. Visible–NIR reflectance: A new approach on soil evaluation. Geoderma 121, 95–112 (2004).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Viscarra Rossel, R. Fine-resolution multiscale mapping of clay minerals in Australian soils measured with near infrared spectra. J. Geophys. Res. Earth Surf. 116 (2011).

  • 13.

    Viscarra Rossel, R., Walvoort, D., McBratney, A., Janik, L. J. & Skjemstad, J. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131, 59–75 (2006).

  • 14.

    Viscarra Rossel, R. & Lark, R. Improved analysis and modelling of soil diffuse reflectance spectra using wavelets. Eur. J. Soil Sci. 60, 453–464 (2009).

  • 15.

    Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2, 433–459 (2010).

    Article 

    Google Scholar 

  • 16.

    Næs, T. & Martens, H. Principal component regression in NIR analysis: Viewpoints, background details and selection of components. J. Chemom. 2, 155–167 (1988).

    Article 

    Google Scholar 

  • 17.

    Geladi, P. & Kowalski, B. R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 185, 1–17 (1986).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Rossel, R. V. Robust modelling of soil diffuse reflectance spectra by “bagging-partial least squares regression”. J. Near Infrared Spectrosc. 15, 39–47 (2007).

  • 19.

    Viscarra Rossel, R. & Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158, 46–54 (2010).

  • 20.

    Tsakiridis, N. L., Keramaris, K. D., Theocharis, J. B. & Zalidis, G. C. Simultaneous prediction of soil properties from VNIR–SWIR spectra using a localized multi-channel 1-d convolutional neural network. Geoderma 367, 114208 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 21.

    Yang, J., Wang, X., Wang, R. & Wang, H. Combination of convolutional neural networks and recurrent neural networks for predicting soil properties using Vis–NIR spectroscopy. Geoderma 380, 114616 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Shen, Z. & Viscarra Rossel, R. A. Automated spectroscopic modelling with optimised convolutional neural networks. Sci. Rep. 11, 208. https://doi.org/10.1038/s41598-020-80486-9 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Li, F., Wang, L., Liu, J., Wang, Y. & Chang, Q. Evaluation of leaf n concentration in winter wheat based on discrete wavelet transform analysis. Remote Sens. 11, 1331 (2019).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Meng, X. et al. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data. Int. J. Appl. Earth Obs. Geoinf. 89, 102111 (2020).

    Article 

    Google Scholar 

  • 25.

    Jiang, B. Geospatial analysis requires a different way of thinking: The problem of spatial heterogeneity. GeoJournal 80, 1–13 (2015).

    Article 

    Google Scholar 

  • 26.

    Song, Y., Wang, J., Ge, Y. & Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 57, 593–610 (2020).

    Article 

    Google Scholar 

  • 27.

    Yang, Z. et al. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient. Sci. Rep. 5, 1–7 (2015).

    Google Scholar 

  • 28.

    Jenny, H. Factors of Soil Formation (McGraw-Hill, 1941).

  • 29.

    Ye, H. et al. Effects of different sampling densities on geographically weighted regression kriging for predicting soil organic carbon. Spat. Stat. 20, 76–91 (2017).

    MathSciNet 
    Article 

    Google Scholar 

  • 30.

    Viscarra Rossel, R. & Webster, R. Predicting soil properties from the Australian soil visible-near infrared spectroscopic database. Eur. J. Soil Sci. 63. https://doi.org/10.1111/j.1365-2389.2012.01495.x (2012).

  • 31.

    Sila, A., Pokhariyal, G. & Shepherd, K. Evaluating regression-kriging for mid-infrared spectroscopy prediction of soil properties in western Kenya. Geoderma Reg. 10, 39–47 (2017).

    Article 

    Google Scholar 

  • 32.

    Fotheringham, A. S., Brunsdon, C. & Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships (Wiley, 2003).

  • 33.

    Brunsdon, C., Fotheringham, A. S. & Charlton, M. E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298 (1996).

    Article 

    Google Scholar 

  • 34.

    Bidanset, P. E. & Lombard, J. R. The effect of kernel and bandwidth specification in geographically weighted regression models on the accuracy and uniformity of mass real estate appraisal. J. Prop. Tax Assess. Admin. 11, 5–14 (2014).

    Google Scholar 

  • 35.

    Brunsdon, C., Fotheringham, A. & Charlton, M. Geographically weighted summary statistics? A framework for localised exploratory data analysis. Comput. Environ. Urban Syst. 26, 501–524 (2002).

    MATH 
    Article 

    Google Scholar 

  • 36.

    Comber, A. et al. The GWR route map: A guide to the informed application of geographically weighted regression. arXiv preprint arXiv:2004.06070 (2020).

  • 37.

    Fotheringham, A. S., Yang, W. & Kang, W. Multiscale geographically weighted regression (MGWR). Ann. Am. Assoc. Geogr. 107, 1247–1265 (2017).

    Google Scholar 

  • 38.

    Yu, H. et al. Inference in multiscale geographically weighted regression. Geogr. Anal. 52, 87–106 (2020).

    Article 

    Google Scholar 

  • 39.

    Wheeler, D. & Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 7, 161–187 (2005).

    Article 

    Google Scholar 

  • 40.

    Harris, P., Fotheringham, A. S. & Juggins, S. Robust geographically weighted regression: A technique for quantifying spatial relationships between freshwater acidification critical loads and catchment attributes. Ann. Assoc. Am. Geogr. 100, 286–306 (2010).

    Article 

    Google Scholar 

  • 41.

    Harris, P., Brunsdon, C., Lu, B., Nakaya, T. & Charlton, M. Introducing bootstrap methods to investigate coefficient non-stationarity in spatial regression models. Spat. Stat. 21, 241–261 (2017).

    MathSciNet 
    Article 

    Google Scholar 

  • 42.

    Cho, S.-H., Lambert, D. M. & Chen, Z. Geographically weighted regression bandwidth selection and spatial autocorrelation: An empirical example using Chinese agriculture data. Appl. Econ. Lett. 17, 767–772 (2010).

    Article 

    Google Scholar 

  • 43.

    Lu, B., Yang, W., Ge, Y. & Harris, P. Improvements to the calibration of a geographically weighted regression with parameter-specific distance metrics and bandwidths. Comput. Environ. Urban Syst. 71, 41–57 (2018).

    Article 

    Google Scholar 

  • 44.

    Arabameri, A., Pradhan, B. & Rezaei, K. Gully erosion zonation mapping using integrated geographically weighted regression with certainty factor and random forest models in gis. J. Environ. Manag. 232, 928–942 (2019).

    Article 

    Google Scholar 

  • 45.

    Li, X. et al. Mapping soil organic carbon and total nitrogen in croplands of the corn belt of northeast china based on geographically weighted regression kriging model. Comput. Geosci. 135, 104392 (2020).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Cao, K., Diao, M. & Wu, B. A big data-based geographically weighted regression model for public housing prices: A case study in Singapore. Ann. Am. Assoc. Geogr. 109, 173–186 (2019).

    Google Scholar 

  • 47.

    Ge, Y. et al. Geographically weighted regression-based determinants of malaria incidences in northern China. Trans. GIS 21, 934–953 (2017).

    Article 

    Google Scholar 

  • 48.

    Viscarra Rossel, R. A. & Hicks, W. S. Soil organic carbon and its fractions estimated by visible–near infrared transfer functions. Eur. J. Soil Sci. 66(3), 438–450 (2015).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Wight, J. P., Ashworth, A. J. & Allen, F. L. Organic substrate, clay type, texture, and water influence on NIR carbon measurements. Geoderma 261, 36–43 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 50.

    Costa, L. R., Tonoli, G. H. D., Milagres, F. R. & Hein, P. R. G. Artificial neural network and partial least square regressions for rapid estimation of cellulose pulp dryness based on near infrared spectroscopic data. Carbohyd. Polym. 224, 115186 (2019).

    Article 
    CAS 

    Google Scholar 

  • 51.

    Murphy, R. J., Schneider, S., Taylor, Z. & Nieto, J. Mapping clay minerals in an open-pit mine using hyperspectral imagery and automated feature extraction. In Vertical Geology, From Remote Sensing to 3D Geological Modelling. Proceedings of the first Vertical Geology Conference, Lausanne, Switzerland, 5–7 (2014).

  • 52.

    Todorova, M. H. & Atanassova, S. L. Near infrared spectra and soft independent modelling of class analogy for discrimination of chernozems, luvisols and vertisols. J. Near Infrared Spectrosc. 24, 271–280 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 53.

    Stenberg, B., Viscarra Rossel, R., Mouazen, A. & Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science, vol. 107 (Academic Press, 2010).

  • 54.

    Harris, P., Fotheringham, A., Crespo, R. & Charlton, M. The use of geographically weighted regression for spatial prediction: An evaluation of models using simulated data sets. Math. Geosci. 42, 657–680 (2010).

    MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 

  • 55.

    Department of Primary Industries and Regional Development, Western Australia. South West Agricultural Region (dpird-008) (2020).

  • 56.

    Australian Bureau of Statistics. Value of Agricultural Commodities Produced, Australia (2020).

  • 57.

    Department of Primary Industries and Regional Development, Western Australia. Western Australian Wheat Industry (2019).

  • 58.

    Rayment, G. E. & Lyons, D. J. Soil Chemical Methods—Australasia (CSIRO Publishing, 2010).

  • 59.

    Dolui, S. et al. Structural correlation-based outlier rejection (score) algorithm for arterial spin labeling time series. J. Magn. Reson. Imaging 45, 1786–1797 (2017).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Pollet, T. V. & van der Meij, L. To remove or not to remove: The impact of outlier handling on significance testing in testosterone data. Adapt. Hum. Behav. Physiol. 3, 43–60 (2017).

    Article 

    Google Scholar 

  • 61.

    Leys, C., Ley, C., Klein, O., Bernard, P. & Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 49, 764–766 (2013).

    Article 

    Google Scholar 

  • 62.

    Mallat, S. G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11, 674–693 (1989).

    ADS 
    MATH 
    Article 

    Google Scholar 

  • 63.

    Whitcher, B. waveslim: Basic Wavelet Routines for One-, Two-, and Three-Dimensional Signal Processing (2020).

  • 64.

    O’brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).

  • 65.

    Akinwande, M. O. et al. Variance inflation factor: As a condition for the inclusion of suppressor variable (s) in regression analysis. Open J. Stat. 5, 754 (2015).

    Article 

    Google Scholar 

  • 66.

    Webster, R. & Oliver, M. A. Sample adequately to estimate variograms of soil properties. J. Soil Sci. 43, 177–192 (1992).

    Article 

    Google Scholar 

  • 67.

    Atteia, O., Dubois, J.-P. & Webster, R. Geostatistical analysis of soil contamination in the Swiss Jura. Environ. Pollut. 86, 315–327 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 68.

    Brunsdon, C., Fotheringham, S. & Charlton, M. Geographically weighted regression-modelling spatial non-stationarity. J. R. Stat. Soc. Ser. D (The Statistician) 47, 431–443 (1998).

    Article 

    Google Scholar 

  • 69.

    Gollini, I., Lu, B., Charlton, M., Brunsdon, C. & Harris, P. Gwmodel: An r package for exploring spatial heterogeneity using geographically weighted models. arXiv preprint arXiv:1306.0413 (2013).

  • 70.

    Lu, B., Harris, P., Charlton, M. & Brunsdon, C. The GWmodel R package: Further topics for exploring spatial heterogeneity using geographically weighted models. Geo Spat. Inf. Sci. 17, 85–101 (2014).

    Article 

    Google Scholar 

  • 71.

    Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer Science & Business Media, 2009).

  • 72.

    Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model selection and multimodel inference 2 (2002).

  • 73.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria 2020).

  • 74.

    Mevik, B.-H., Wehrens, R., Liland, K. H. & Hiemstra, P. pls: Partial Least Squares and Principal Component Regression (2020).

  • 75.

    Bivand, R., Yu, D., Nakaya, T. & Garcia-Lopez, M. spgwr: Geographically weighted regression. R Package Version 0.6-34. http://cran.r-project.org/web/packages/spgwr/. Accessed August 30th 2020 (2020).


  • Source: Ecology - nature.com

    Making the case for hydrogen in a zero-carbon economy

    Flight performance and the factors affecting the flight behaviour of Philaenus spumarius the main vector of Xylella fastidiosa in Europe