in

Specialization directs habitat selection responses to a top predator in semiaquatic but not aquatic taxa

[adace-ad id="91168"]
  • 1.

    Binckley, C. A. & Resetarits, W. J. Habitat selection determines abundance, richness and species composition of beetles in aquatic communities. Biol. Lett. 1, 370–374 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Foltz, S. J. & Dodson, S. I. Aquatic Hemiptera community structure in stormwater retention ponds: A watershed land cover approach. Hydrobiologia 621, 49–62 (2009).

    Article 

    Google Scholar 

  • 3.

    Goldberg, F. J., Quinzio, S. & Vaira, M. Oviposition-site selection by the toad Melanophryniscus rubriventris in an unpredictable environment in Argentina. Can. J. Zool. 84, 699–705 (2006).

    Article 

    Google Scholar 

  • 4.

    Blaustein, L. Oviposition site selection in response to risk of predation: Evidence from aquatic habitats and consequences for population dynamics and community. In Evolutionary Theory and Processes: Modern Perspectives (ed. Wasser, S. P.) 441–456 (Kluwer, 1999).

  • 5.

    Resetarits, W. J. & Binckley, C. A. Spatial contagion of predation risk affects colonization dynamics in experimental aquatic landscapes. Ecology 90, 869–876 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 6.

    Kraus, J. M. & Vonesh, J. R. Feedbacks between community assembly and habitat selection shape variation in local colonization. J. Anim. Ecol. 79, 795–802 (2010).

    PubMed 

    Google Scholar 

  • 7.

    Resetarits, W. J. Oviposition site choice and life history evolution. Am. Zool. 36, 205–215 (1996).

    Article 

    Google Scholar 

  • 8.

    Morris, D. W. Toward an ecological synthesis: A case for habitat selection. Oecologia 136, 1–13 (2003).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Resetarits, W. J. & Wilbur, H. M. Choice of oviposition site by Hyla chrysoscelis: Role of predators and competitors. Ecology 70, 220–228 (1989).

    Article 

    Google Scholar 

  • 10.

    Resetarits, W. J., Binckley, C. A. & Chalcraft, D. R. Habitat selection, species interactions, and processes of community assembly in complex landscapes: A metacommunity perspective. In Metacommunities: Spatial Dynamics and Ecological Communities (eds. Holyoak, M., Leybold, A. & Holt, R. D.) 374–398 (University of Chicago Press, Chicago, 2005).

  • 11.

    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).

    Article 

    Google Scholar 

  • 12.

    Langellotto, G. A. & Denno, R. F. Responses of invertebrate natural enemies to complex-structured habitats: A meta-analytical synthesis. Oecologia 139, 1–10 (2004).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Åbjörnsson, K., Brönmark, C. & Hansson, L.-A. The relative importance of lethal and non-lethal effects of fish on insect colonisation of ponds: Influence of fish on insect colonisation. Freshw. Biol. 47, 1489–1495 (2002).

    Article 

    Google Scholar 

  • 14.

    Pintar, M. R. & Resetarits, W. J. Jr. Out with the old, in with the new: Oviposition preference matches larval success in cope’s gray treefrog, Hyla chrysoscelis. J. Herpetol. 51, 186–189 (2017).

    Article 

    Google Scholar 

  • 15.

    Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Evol. Syst. 27, 337–363 (1996).

    Article 

    Google Scholar 

  • 16.

    Caudill, C. C. & Peckarsky, B. L. Lack of appropriate behavioral or developmental responses by mayfly larvae to trout predators. Ecology 84, 2133–2144 (2003).

    Article 

    Google Scholar 

  • 17.

    Binckley, C. A. & Resetarits, W. J. Functional equivalence of non-lethal effects: Generalized fish avoidance determines distribution of gray treefrog, Hyla chrysoscelis, larvae. Oikos 102, 623–629 (2003).

    Article 

    Google Scholar 

  • 18.

    Pollard, C. J. et al. Removal of an exotic fish influences amphibian breeding site selection: Exotic fish removal. J. Wildl. Manag. 81, 720–727 (2017).

    Article 

    Google Scholar 

  • 19.

    Petranka, J. W. & Fakhoury, K. Evidence of a chemically-mediated avoidance response of ovipositing insects to bluegills and green frog tadpoles. Copeia 1991, 234–239 (1991).

    Article 

    Google Scholar 

  • 20.

    McPeek, M. A. Differential dispersal tendencies among Enallagma damselflies (Odonata) inhabiting different habitats. Oikos 56, 187–195 (1989).

    Article 

    Google Scholar 

  • 21.

    Šigutová, H., Šigut, M. & Dolný, A. Intensive fish ponds as ecological traps for dragonflies: An imminent threat to the endangered species Sympetrum depressiusculum (Odonata: Libellulidae). J. Insect Conserv. 19, 961–974 (2015).

    Article 

    Google Scholar 

  • 22.

    Potts, K. M. Survival and development of larval odonates (Anisoptera) and female oviposition site choice in response to predatory fish. https://egrove.olemiss.edu/etd/1854 (2020).

  • 23.

    Blaustein, L., Kiflawi, M., Eitam, A., Mangel, M. & Cohen, J. E. Oviposition habitat selection in response to risk of predation in temporary pools: Mode of detection and consistency across experimental venue. Oecologia 138, 300–305 (2004).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Wildermuth, H. Habitat selection and oviposition site recognition by the dragonfly Aeshna juncea (L.): An experimental approach in natural habitats (Anisoptera: Aeshnidae). Odonatologica 22, 27–44 (1993).

  • 25.

    Wildermuth, H. Habitatselektion bei Libellen. Adv. Odonatol. 6, 223–257 (1994).

    Google Scholar 

  • 26.

    Laurila, A. Breeding habitat selection and larval performance of two anurans in freshwater rock-pools. Ecography 21, 484–494 (1998).

    Article 

    Google Scholar 

  • 27.

    Schwind, R. Spectral regions in which aquatic insects see reflected polarized light. J. Comp. Physiol. A 177, 439–448 (1995).

    Article 

    Google Scholar 

  • 28.

    Horváth, G. & Kriska, G. Polarization vision in aquatic insects and ecological traps for polarotactic insects in Aquatic Insects: Challenges to Populations (eds. Lancaster, J. & Briers, R. A.) 204–229 (CAB International Publishing, 2008).

  • 29.

    Schulte, L. M. et al. The smell of success: Choice of larval rearing sites by means of chemical cues in a Peruvian poison frog. Anim. Behav. 81, 1147–1154 (2011).

    Article 

    Google Scholar 

  • 30.

    Corbet, P. S. Dragonflies: Behavior and ecology of Odonata. (Harley Books, 1999).

  • 31.

    Nicolet, P. et al. The wetland plant and macroinvertebrate assemblages of temporary ponds in England and Wales. Biol. Conserv. 120, 261–278 (2004).

    Article 

    Google Scholar 

  • 32.

    Henrikson, B.-I. Sphagnum mosses as a microhabitat for invertebrates in acidified lakes and the colour adaptation and substrate preference in Leucorrhinia dubia (Odonata, Anisoptera). Ecography 16, 143–153 (1993).

    Article 

    Google Scholar 

  • 33.

    Kokko, H. & Sutherland, W. J. Ecological traps in changing environments: Ecological and evolutionary consequences of a behaviourally mediated Allee effect. Evol. Ecol. Res. 3, 537–551 (2001).

    Google Scholar 

  • 34.

    Gilroy, J. J. & Sutherland, W. J. Beyond ecological traps: Perceptual errors and undervalued resources. Trends Ecol. Evol. 22, 351–356 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 35.

    Abrams, P. A., Cressman, R. & Křivan, V. The role of behavioral dynamics in determining the patch distributions of interacting species. Am. Nat. 169, 505–518 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 36.

    Denton, J. & Beebee, T. J. C. Palatability of anuran eggs and embryos. Amphib. Reptil. 12, 111–112 (1991).

    Article 

    Google Scholar 

  • 37.

    Larson, D. J. The predaceous water beetles (Coleoptera: Dytiscidae) of Alberta: Systematics, natural history and distribution. Quaest. Entomol. 11, 245–498 (1985).

    Google Scholar 

  • 38.

    Mikolajewski, D. J. & Rolff, J. Benefits of morphological defence demonstrated by direct manipulation in larval dragonflies. Evol. Ecol. Res. 6, 619–626 (2004).

    Google Scholar 

  • 39.

    Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 523–540 (2001).

    Article 

    Google Scholar 

  • 40.

    Benard, M. F. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 35, 651–673 (2004).

    Article 

    Google Scholar 

  • 41.

    McCauley, S. J., Davis, C. J. & Werner, E. E. Predator induction of spine length in larval Leucorrhinia intacta (Odonata). Evol. Ecol. Res. 10, 435–447 (2008).

    Google Scholar 

  • 42.

    Nöllert, A. & Nöllert, C. Die Amphibien Europas. (Franckh-Kosmos Verlags-GmbH and Company, 1992).

  • 43.

    Maštera, J., Zavadil, V. & Dvořák, J. Vajíčka a larvy obojživelníků České republiky. (Academia, 2015).

  • 44.

    Speybroeck, J., Beukema, W., Bok, B. & Van der Voort, J. Field Guide to the Amphibians and Reptiles of Britain and Europe. (Bloomsbury Natural History, 2016).

  • 45.

    Sternberg, K. & Buchwald, R. Die Libellen Baden-Württembergs. Band 2: Großlibellen (Anisoptera). (Verlag Eugen Ulmer Gmbh & Co., 2000).

  • 46.

    Mikolajewski, D. J. & Johansson, F. Morphological and behavioral defenses in dragonfly larvae: Trait compensation and cospecialization. Behav. Ecol. 15, 614–620 (2004).

    Article 

    Google Scholar 

  • 47.

    Kjærstad, G., Dolmen, D., Olsvik, H. A. & Tilseth, E. The backswimmer Notonecta glauca L. (Hemiptera, Notonectidae) in Central Norway. Nor. J. Entomol. 56, 44–49 (2009).

    Google Scholar 

  • 48.

    Svensson, B. G., Tallmark, B. & Petersson, E. Habitat heterogeneity, coexistence and habitat utilization in five backswimmer species (Notonecta spp.; Hemiptera, Notonectidae). Aquat. Insects 22, 81–98 (2000).

    Article 

    Google Scholar 

  • 49.

    Macan, T. T. A twenty-one-year study of the water-bugs in a Moorland Fishpond. J. Anim. Ecol. 45, 913–922 (1976).

    Article 

    Google Scholar 

  • 50.

    Lock, K., Adriaens, T., Meutter, F. V. D. & Goethals, P. Effect of water quality on waterbugs (Hemiptera: Gerromorpha & Nepomorpha) in Flanders (Belgium): Results from a large-scale field survey. Ann. Limnol. Int. J. Limnol. 49, 121–128 (2013).

    Article 

    Google Scholar 

  • 51.

    Cook, W. L. & Streams, F. A. Fish predation on Notonecta (Hemiptera): Relationship between prey risk and habitat utilization. Oecologia 64, 177–183 (1984).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Swevers, L., Lambert, J. G. D. & De Loof, A. Synthesis and metabolism of vertebrate-type steroids by tissues of insects: A critical evaluation. Experientia 47, 687–698 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Bergsten, J. & Miller, K. B. Taxonomic revision of the Holarctic diving beetle genus Acilius Leach (Coleoptera: Dytiscidae): Acilius taxonomic revision. Syst. Entomol. 31, 145–197 (2005).

    Article 

    Google Scholar 

  • 54.

    Åbjörnsson, K., Wagner, B. M. A., Axelsson, A., Bjerselius, R. & Olsén, K. H. Responses of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111, 166–171 (1997).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 55.

    Boukal, D. S. et al. Catalogue of water beetles of the Czech Republic. Klapalekiana 43(Suppl.), 1–289 (2007).

    Google Scholar 

  • 56.

    Gioria, M., Schaffers, A., Bacaro, G. & Feehan, J. The conservation value of farmland ponds: Predicting water beetle assemblages using vascular plants as a surrogate group. Biol. Conserv. 143, 1125–1133 (2010).

    Article 

    Google Scholar 

  • 57.

    Everard, M. Britain’s Freshwater Fishes. (Princeton University Press, 2013).

  • 58.

    Briers, R. A. & Warren, P. H. Competition between the nymphs of two regionally co-occurring species of Notonecta (Hemiptera: Notonectidae). Freshw. Biol. 42, 11–20 (1999).

    Article 

    Google Scholar 

  • 59.

    Wiggins, G. B., Mackay, R. J. & Smith, I. M. Evolutionary and ecological strategies of animals on annual temporary pools. Arch. Für Hydrobiol. Suppl. 58, 197–206 (1980).

    Google Scholar 

  • 60.

    Culler, L. E., Ohba, S. & Crumrine, P. Predator-Prey Interactions of Dytiscids. In Ecology, Systematics, and the Natural History of Predaceous Diving Beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 363–379 (Springer, 2014).

  • 61.

    Schuh, R. T. & Slater, J. A. True Bugs of the World (Hemiptera:Heteroptera): Classification and Natural History (Cornell University Press, Cornell, 1995).

    Google Scholar 

  • 62.

    Streams, F. A. Intrageneric predation by Notonecta (Hemiptera: Notonectidae) in the laboratory and in nature. Ann. Entomol. Soc. Am. 85, 265–273 (1992).

    Article 

    Google Scholar 

  • 63.

    Giacoma, C., Zugolaro, C. & Beani, L. The advertisement calls of the green toad (Bufo viridis): Variability and role in mate choice. Herpetologica 53, 454–464 (1997).

    Google Scholar 

  • 64.

    Pekár, S. & Brabec, M. Generalized estimating equations: A pragmatic and flexible approach to the marginal GLM modelling of correlated data in the behavioural sciences. Ethology 124, 86–93 (2018).

    Article 

    Google Scholar 

  • 65.

    Halekoh, U., Højsgaard, S. & Yan, J. The R Package geepack for generalized estimating equations. J. Stat. Softw. 15, 1–11 (2006).

    Article 

    Google Scholar 

  • 66.

    R Core Team. R: A Language and Environment for Statistical Computing (The R Foundation for Statistical Computing, Vienna, Austria). https://www.r-project.org/ (2020).

  • 67.

    Wells, K. D. The Ecology and Behavior of Amphibians. (University of Chicago Press, 2007).

  • 68.

    Purrenhage, J. L. & Boone, M. D. Amphibian community response to variation in habitat structure and competitor density. Herpetologica 65, 14–30 (2009).

    Article 

    Google Scholar 

  • 69.

    Formanowicz, D. R. & Bobka, M. S. Predation risk and microhabitat preference: An experimental study of the behavioral responses of prey and predator. Am. Midl. Nat. 121, 379–386 (1989).

    Article 

    Google Scholar 

  • 70.

    Egan, R. S. & Paton, P. W. C. Within-pond parameters affecting oviposition by wood frogs and spotted salamanders. Wetlands 24, 1–13 (2004).

    Article 

    Google Scholar 

  • 71.

    Ward, S. A. Optimal habitat selection in time-limited dispersers. Am. Nat. 129, 568–579 (1987).

    Article 

    Google Scholar 

  • 72.

    Fretwell, S. D. & Lucas, H. L. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Biotheoretica 19, 16–36 (1970).

    Article 

    Google Scholar 

  • 73.

    Austad, S. N. A classification of alternative reproductive behaviors and methods for field-testing ESS models. Am. Zool. 24, 309–319 (1984).

    Article 

    Google Scholar 

  • 74.

    Crespo, J. G. A review of chemosensation and related behavior in aquatic insects. J. Insect Sci. 11, 1–39 (2011).

    Article 

    Google Scholar 

  • 75.

    Wildermuth, H. Dragonflies recognize the water of rendezvous and oviposition sites by horizontally polarized light: A behavioural field test. Naturwissenschaften 85, 297–302 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 76.

    Chislock, M. F., Doster, E., Zitomer, R. A. & Wilson, A. E. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 4, 10 (2013).

    Google Scholar 

  • 77.

    Dolný, A., Mižičová, H. & Harabiš, F. Natal philopatry in four European species of dragonflies (Odonata: Sympetrinae) and possible implications for conservation management. J. Insect Conserv. 17, 821–829 (2013).

    Article 

    Google Scholar 

  • 78.

    Refsnider, J. M. & Janzen, F. J. Putting eggs in one basket: Ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu. Rev. Ecol. Evol. Syst. 41, 39–57 (2010).

    Article 

    Google Scholar 

  • 79.

    Brodin, T., Mikolajewski, D. J. & Johansson, F. Behavioural and life history effects of predator diet cues during ontogeny in damselfly larvae. Oecologia 148, 162–169 (2006).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 80.

    Kershenbaum, A., Spencer, M., Blaustein, L. & Cohen, J. E. Modelling evolutionarily stable strategies in oviposition site selection, with varying risks of predation and intraspecific competition. Evol. Ecol. 26, 955–974 (2012).

    Article 

    Google Scholar 

  • 81.

    Hopper, K. R. Risk-spreading and bet-hedging in insect population biology. Annu. Rev. Entomol. 44, 535–560 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 82.

    Gioria, M. Habitats. In Ecology, Systematics, and the Natural History of predaceous diving beetles (Coleoptera: Dytiscidae) (ed. Yee, D. A.) 307–362 (Springer, Netherlands, 2014).

    Google Scholar 

  • 83.

    Diehl, S. Fish predation and benthic community structure: The role of omnivory and habitat complexity. Ecology 73, 1646–1661 (1992).

    Article 

    Google Scholar 

  • 84.

    Giller, P. S. & McNeill, S. Predation strategies, resource partitioning and habitat selection in Notonecta (Hemiptera/Heteroptera). J. Anim. Ecol. 50, 789–808 (1981).

    Article 

    Google Scholar 

  • 85.

    Ribera, I. & Nilsson, A. N. Morphometric patterns among diving beetles (Coleoptera: Noteridae, Hygrobiidae, and Dytiscidae). Can. J. Zool. 73, 2343–2360 (2011).

    Article 

    Google Scholar 

  • 86.

    Roberts, G. Why individual vigilance declines as group size increases. Anim. Behav. 51, 1077–1086 (1996).

    Article 

    Google Scholar 

  • 87.

    Schoeppner, N. M. & Relyea, R. A. Damage, digestion, and defence: The roles of alarm cues and kairomones for inducing prey defences. Ecol. Lett. 8, 505–512 (2005).

    PubMed 
    Article 

    Google Scholar 

  • 88.

    Schoeppner, N. M. & Relyea, R. A. Interpreting the smells of predation: How alarm cues and kairomones induce different prey defences. Funct. Ecol. 23, 1114–1121 (2009).

    Article 

    Google Scholar 

  • 89.

    McCauley, S. J. & Rowe, L. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 6, 449–452 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Institute Professor Paula Hammond named to White House science council

    Mycorrhizal types influence island biogeography of plants