in

Temporal activity patterns suggesting niche partitioning of sympatric carnivores in Borneo, Malaysia

Study sites

We conducted this study in three protected areas in Sabah, Malaysian Borneo: Danum Valley Conservation Area (DVCA), the Lower Kinabatangan Wildlife Sanctuary (LKWS), and Tabin Wildlife Reserve (TWR) (Fig. 4). The minimum and maximum daily temperatures and annual precipitation among the three study sites did not differ significantly (annual temperature: 22–33 ℃, annual precipitation 2400–3100 mm; Mitchell37; Matsuda et al.39; South East Asia Rainforest Research Partnership Unpublished data. https://www.searrp.org/) although there is no recent precise climate data of TWR.

Figure 4

Location of the three study sites in Borneo.

Full size image

The DVCA (4° 50′–5° 05′ N, 117° 30′–117° 48′ E) is a Class I Protection Forest Reserve established by the Sabah state government in 1996 and managed by the Sabah Foundation (Yayasan Sabah Group) covering 438 km2. Approximately 90% of the area is comprised of mature lowland evergreen dipterocarp forests34. The study area is an old-growth forest surrounding the Borneo Rainforest Lodge (5° 01′ N, 117° 44′ E), a tourist lodging facility.

The LKWS (5° 10′–5° 50′ N, 117° 40′–118° 30′ E), is located along the Kinabatangan River, which is the longest river flowing to the east coast, reaching 560 km inland and with a catchment area of 16,800 km2. Designated as a wildlife sanctuary and gazetted in 2005, the LKWS consists of ten forest blocks totaling 270 km2, comprised of seasonal and tidal swamp forests, permanent freshwater swamps, mangrove forests, and lowland dipterocarp forests35,36. The southern area of the Menanggul River is extensively covered by secondary forest. However, the northern area has been deforested for oil palm (Elaeis guineensis) plantations, except for a protected zone along the river. The TWR (5° 05′–5° 22′ N, 118° 30′–118° 55′ E) is located approximately 50 km northeast of Lahad Datu, eastern Sabah, and covers approximately 1225 km2.

The TWR is exclusively surrounded by large oil palm plantations. Most parts of the TWR were heavily logged in the 1970s and the 1980s, leaving mainly regenerating mixed dipterocarp tropical rainforests dominated by pioneer species such as Neolamarckia cadamba and Macaranga bancana37,38. The study area was near the Sabah Wildlife Department base camp located on the western boundary of the TWR (5° 11′ N, 118° 30′ E). The study area includes heavily logged secondary forests and a small patchy old forest (0.74 km2).

Data collection

We set up 15, 30, and 28 infrared-triggered sensor cameras (Bushnell, Trophy Cam TM) in the DVCA (July 2010–August 2011 and May 2014–December 2016), LKWS (July 2010–December 2014) and TWR (May 2010–June 2012), respectively. As a result, the cumulative number of camera operation days in DVCA, LKWS, and TWR were 14,134, 18,265, and 4980, for a total of 37,379 days. Although it was impossible to record the animals during certain months because of adverse weather conditions, such as heavy rain, flooding, battery failure, other malfunctions mainly caused by insects nesting inside the cameras, or logistical problems, the cameras remained continuously activated. Due to these reasons, camera operating days differed among the cameras in each site. In this study, we used photos of animals, and we did not handle animals directly. All cameras were placed at heights of 30–50 cm above the forest floor and were tied to tree trunks using fabric belts to reduce damage to the trees.

Because the terrain and level of regulations to conduct this study differed by the study site, we employed different layouts of camera stations at each study site. In the DVCA, T. K. and three trained assistants placed 15 cameras along six forest trails totaling 9000 m, which were established and maintained by the tourist lodging facility. Because it was prohibited to establish new trails and to place cameras at sites where tourism activity would be disturbed in the study area; therefore, the trails that were longer than 1 km and relatively easily accessible were selected as camera locations to maintain consistency of trail characteristics. Cameras were placed on each trail at 50 m intervals, alternating right and left to avoid bias of photo-capture frequency caused by terrain differences. Each station was at least 25 m away from each other on the different trails (Fig. 5a). The operating days differed among the 15 cameras, i.e., mean = 942.2; SD = 152.0; range = 682–1229.

Figure 5

Maps of camera locations at each study site. (a) Trails and camera stations at DVCA; (b1) trails and camera stations and (b2) trail locations at LKWS; (c) a trail and camera stations at TWR.

Full size image

In the LKWS, I. M. and two trained assistants had planned to install 30 cameras, but a maximum of only 27 cameras were in operation during the study period in the LKWS, probably owing to malfunctions caused by high humidity and rain in the tropical rainforest. All cameras were placed on the trails in the riverine forest along the Menanggul River. As part of a project on the primates of the riverine forests along the Menanggul River and to assist their observation and tracking in the swampy habitat in the LKWS39, trails 200–500 m long and 1 m wide were established at 500 m intervals on both sides of the river. Of the 16 trails, we selected ten trails that were all 500 m long and placed three cameras at the points from the riverbank to the inland forest in each trail, that is, 10 m, 250 m and 500 m from the riverbank (Fig. 5b1); cameras were set up 50 m away from the trails (Fig. 5b2). Consequently, the number of operating days differed among 30 cameras, i.e., mean = 608.8; SD = 531.4; range = 28–1315.

In the TWR, M. N. and A. M placed 28 and three cameras on camera stations created by overlaying a 750 × 500 m grid in May and August 2010, respectively. Cameras were placed at each grid point at 250 m intervals (Fig. 5c). The operating days differed significantly among the 28 cameras, that is, mean = 177.9; SD = 123.2; range = 26–539.

Temporal activity analysis

We defined non-independent photo capture events as consecutive photos of the same or different individuals of the same species taken within a 30-min interval and removed these photos from the analysis. We plotted the activity patterns of each species using a von Mises kernel40,41 using the package activity42 in R version 4.0.243. We estimated the activity level of animals with more than ten independent photo-capture events as indicated in the previous studies26,44. For our analysis, we pooled the images from all study sites if the photo number of a species was less than 10 in any study locations. If that was not the case, we used the package activity42 to compare species activity levels across the three research sites using a Wald test with Bonferroni correction for multiple pairwise comparisons. When there were significant differences, we separately estimated activity levels by the study sites. When there were no significant differences among the sites, we pooled the photo numbers to estimate activity levels.

We divided a day into three periods: nighttime (19:00–04:59 h local time (GMT + 8)); daytime (07:00–16:59 h); and twilight (05:00–06:59 h and 17:00–18:59 h). During the study period, twilight hours essentially corresponded to 1 h between sunset and sunrise, at 5:54–6:25 and 17:50–18:25 in DVCA, 5:51–6:23 and 17:47–18:25 in LKWS, and 5:50–6:21 and 17:46–18:22 in TWR (data from https://www.timeanddate.com). After converting the time data of each photo-capture event into radians, we fitted a circular kernel density distribution estimated by 10,000 bootstrap resampling to radian time data, and we estimated the percentage of active time in each period. We then categorized the activity patterns of photo-captured carnivore species into four categories: nocturnal (active at night); crepuscular (active during twilight periods); diurnal (active during daytime); and cathemeral (active in all periods). We defined the activity pattern of the species as showing a statistically higher proportion of photo-captures at nighttime, daytime, and twilight periods than at other periods, such as nocturnal, diurnal, and crepuscular, respectively. When photo-capture proportions showed no differences among the three periods, we defined the activity pattern as cathemeral. For species with substantial sample size (50 <), we compared the number of independent photo-capture event among the three periods by species using generalized liner mixed models (GLMMs) to determine the activity patterns of each species using the lme445 and multcomp46 packages. We set the period as a fixed effect, the study site and the camera position as random effects, and the camera working days as an offset term. For other species, we tested if the animals were selectively active; in other words, they were photo-captured disproportionally during any of the three periods using the package adehabitatHS in R47. It was impossible to identify individuals from the photo data when only part of the body was recorded; therefore, we used a design I resource selection function, selecting at the population level48.

After these procedures, we evaluated temporal activity overlaps among the species by the coefficients of overlap (Δ) for each species, ranging from 0 (no overlap) to 1 (complete overlap) using the overlap package in R49. We used Δ1 to estimate the nonparametric overlap coefficient of species with < 75 sample sizes, while we used the Δ4 estimator for other species with > 75 photos40. Next, we categorized the temporal activity overlap level as: low, moderate, and high, based on the values of coefficients of overlap (Δ) generated by the pairwise comparisons. Low, moderate, and high overlaps indicated that Δ values were ≤ 50, 50 < ∆ ≤ 75, and ∆ > 75, respectively8. Finally, we calculated the 95% confidence intervals of the overlap coefficient using a smoothed bootstrap with 10,000 resamples.


Source: Ecology - nature.com

A robot that finds lost items

Isotope data from amino acids indicate Darwin’s ground sloth was not an herbivore