Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55. https://doi.org/10.1890/Es15-00203.1 (2015).
Google Scholar
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).
Google Scholar
Anderegg, W. R. L., Kane, J. M. & Anderegg, L. D. L. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3, 30–36 (2013).
Google Scholar
Taccoen, A. et al. Background mortality drivers of European tree species: climate change matters. Proc R Soc B-Biol Sci 286, 1–10. https://doi.org/10.1098/rspb.2019.0386 (2019).
Google Scholar
Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28. https://doi.org/10.1111/nph.15048 (2018).
Google Scholar
Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J. & Stephenson, N. L. Why is tree drought mortality so hard to predict? Trends Ecol. Evol., 1–13. https://doi.org/10.1016/j.tree.2021.02. (2021).
McDowell, N. G. et al. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol. 200, 304–321. https://doi.org/10.1111/nph.12465 (2013).
Google Scholar
Keane, R. E. et al. Tree mortality in gap models: application to climate change. Clim. Change 51, 509–540. https://doi.org/10.1023/A:1012539409854 (2001).
Google Scholar
Bircher, N., Cailleret, M. & Bugmann, H. The agony of choice: different empirical mortality models lead to sharply different future forest dynamics. Ecol. Appl. 25, 1303–1318. https://doi.org/10.1890/14-1462.1 (2015).
Google Scholar
Bugmann, H. et al. Tree mortality submodels drive long term forest dynamics: an assessment across 15 models from the stand to the global scale. Ecosphere 10, 1–22. https://doi.org/10.1002/ecs2.2616 (2019).
Google Scholar
Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc Natl Acad Sci USA 111, 3280–3285. https://doi.org/10.1073/pnas.1222477110 (2014).
Google Scholar
Lines, E. R., Coomes, D. A. & Purves, D. W. Influences of forest structure, climate and species composition on tree mortality across the Eastern US. PLoS ONE 5, 1–12. https://doi.org/10.1371/journal.pone.0013212 (2010).
Google Scholar
Purves, D. & Pacala, S. Predictive models of forest dynamics. Science 320, 1452–1453. https://doi.org/10.1126/science.1155359 (2008).
Google Scholar
Cailleret, M., Bircher, N., Hartig, F., Hülsmann, L. & Bugmann, H. Bayesian calibration of a growth-dependent tree mortality model to simulate the dynamics of European temperate forests. Ecol. Appl. 30, 1–17. https://doi.org/10.1002/eap.2021 (2020).
Google Scholar
Rowland, L., Martinez-Vilalta, J. & Mencuccini, M. Hard times for high expectations from hydraulics: predicting drought-induced forest mortality at landscape scales remains a challenge. New Phytol. 230, 1685–1687. https://doi.org/10.1111/nph.17317 (2021).
Google Scholar
Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690. https://doi.org/10.1111/gcb.13535 (2017).
Google Scholar
Bigler, C. & Bugmann, H. Growth-dependent tree mortality models based on tree rings. Can. J. For. Res. 33, 210–221. https://doi.org/10.1139/X02-180 (2003).
Google Scholar
Hülsmann, L., Bugmann, H., Cailleret, M. & Brang, P. How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. Ecol. Appl. 28, 522–540. https://doi.org/10.1002/eap.1668 (2018).
Google Scholar
Weiskittel, A. R., Hann, D. W., Kershaw, J. A. & Vanclay, J. K. in Forest Growth and Yield Modeling Ch. 8, 139–155 (Wiley, 2011).
Holzwarth, F., Kahl, A., Bauhus, J. & Wirth, C. Many ways to die – partitioning tree mortality dynamics in a near-natural mixed deciduous forest. J. Ecol. 101, 220–230. https://doi.org/10.1111/1365-2745.12015 (2013).
Google Scholar
Dobbertin, M. Tree growth as indicator of tree vitality and of tree reaction to environmental stress: a review. Eur. J. For. Res. 124, 319–333. https://doi.org/10.1007/s10342-005-0085-3 (2005).
Google Scholar
Thrippleton, T., Hülsmann, L., Cailleret, M. & Bugmann, H. Projecting forest dynamics across Europe: potentials and pitfalls of empirical mortality algorithms. Ecosystems 23, 188–203. https://doi.org/10.1007/s10021-019-00397-3 (2020).
Google Scholar
Adams, H. D. et al. Empirical and process-based approaches to climate-induced forest mortality models. Front Plant Sci 4, 1–5. https://doi.org/10.3389/fpls.2013.00438 (2013).
Google Scholar
Archambeau, J. et al. Similar patterns of background mortality across Europe are mostly driven by drought in European beech and a combination of drought and competition in Scots pine. Agric. For. Meteorol. 280, 1–12. https://doi.org/10.1016/j.agrformet.2019.107772 (2020).
Google Scholar
Luo, Y. & Chen, H. Y. H. Competition, species interaction and ageing control tree mortality in boreal forests. J. Ecol. 99, 1470–1480. https://doi.org/10.1111/j.1365-2745.2011.01882.x (2011).
Google Scholar
Brzeziecki, B. & Kienast, F. Classifying the life-history strategies of trees on the basis of the grimian model. For. Ecol. Manage. 69, 167–187. https://doi.org/10.1016/0378-1127(94)90227-5 (1994).
Google Scholar
Valladares, F. & Niinemets, U. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39, 237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506 (2008).
Google Scholar
Kobe, R. K. & Coates, K. D. Models of sapling mortality as a function of growth to characterize interspecific variation in shade tolerance of eight tree species of northwestern British Columbia. Can. J. For. Res. 27, 227–236. https://doi.org/10.1139/x96-182 (1997).
Google Scholar
Wyckoff, P. H. & Clark, J. S. The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains. J. Ecol. 90, 604–615. https://doi.org/10.1046/j.1365-2745.2002.00691.x (2002).
Google Scholar
Anderegg, L. D. L. & HilleRisLambers, J. Drought stress limits the geographic ranges of two tree species via different physiological mechanisms. Glob. Change Biol. 22, 1029–1045. https://doi.org/10.1111/gcb.13148 (2016).
Google Scholar
Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Change Biol. 22, 2329–2352. https://doi.org/10.1111/gcb.13160 (2016).
Google Scholar
Etzold, S. et al. One century of forest monitoring data in Switzerland reveals species- and site-specific trends of climate-induced tree mortality. Front Plant Sci 10, 1–19. https://doi.org/10.3389/fpls.2019.00307 (2019).
Google Scholar
Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103. https://doi.org/10.1016/j.baae.2020.04.003 (2020).
Google Scholar
Vanoni, M., Cailleret, M., Hülsmann, L., Bugmann, H. & Bigler, C. How do tree mortality models from combined tree-ring and inventory data affect projections of forest succession?. For. Ecol. Manage. 433, 606–617. https://doi.org/10.1016/j.foreco.2018.11.042 (2019).
Google Scholar
Huber, N., Bugmann, H. & Lafond, V. Capturing ecological processes in dynamic forest models: why there is no silver bullet to cope with complexity. Ecosphere 11, 1–34. https://doi.org/10.1002/ecs2.3109 (2020).
Google Scholar
Bugmann, H. A simplified forest model to study species composition along climate gradients. Ecology 77, 2055–2074. https://doi.org/10.2307/2265700 (1996).
Google Scholar
Hülsmann, L., Bugmann, H. & Brang, P. How to predict tree death from inventory data – lessons from a systematic assessment of European tree mortality models. Can. J. For. Res. 47, 890–900. https://doi.org/10.1139/cjfr-2016-0224 (2017).
Google Scholar
Eid, T. & Tuhus, E. Models for individual tree mortality in Norway. For. Ecol. Manag. 154, 69–84. https://doi.org/10.1016/S0378-1127(00)00634-4 (2001).
Google Scholar
Monserud, R. A. & Sterba, H. Modeling individual tree mortality for Austrian forest species. For. Ecol. Manag. 113, 109–123. https://doi.org/10.1016/S0378-1127(98)00419-8 (1999).
Google Scholar
Dursky, J. Modellierung der Absterbeprozesse in Rein- und Mischbeständen aus Fichte und Buche. Allg. Forst- u. Jagdztg. 168, 131–134 (1997).
Trasobares, A., Pukkala, T. & Muna, J. Growth and yield model for uneven-aged mixtures of Pinus sylvestris L. and Pinus nigra Arn. in Catalonia, north-east Spain. Ann. For. Sci. 61, 9–24, doi:https://doi.org/10.1051/forset:2003080 (2004).
Crecente-Campo, F., Soares, P., Tome, M. & Dieguez-Aranda, U. Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. For. Ecol. Manage. 260, 1965–1974. https://doi.org/10.1016/j.foreco.2010.08.044 (2010).
Google Scholar
Palahi, M., Pukkala, T., Miina, J. & Montero, G. Individual-tree growth and mortality models for Scots pine (Pinus sylvestris L.) in north-east Spain. Ann. For. Sci. 60, 1–10, https://doi.org/10.1051/forest:2002068 (2003).
Bravo-Oviedo, A., Sterba, H., del Rio, M. & Bravo, F. Competition-induced mortality for Mediterranean Pinus pinaster Ait. and P-sylvestris L. For. Ecol. Manag. 222, 88–98, doi:https://doi.org/10.1016/j.foreco.2005.10.016 (2006).
Fridman, J. & Ståhl, G. A three-step approach for modelling tree mortality in Swedish forests. Scand. J. For. Res. 16, 455–466. https://doi.org/10.1080/02827580152632856 (2001).
Google Scholar
Wunder, J. et al. Growth-mortality relationships as indicators of life-history strategies: a comparison of nine tree species in unmanaged European forests. Oikos 117, 815–828. https://doi.org/10.1111/j.0030-1299.2008.16371.x (2008).
Google Scholar
Das, A., Battles, J., Stephenson, N. L. & van Mantgem, P. J. The contribution of competition to tree mortality in old-growth coniferous forests. For. Ecol. Manage. 261, 1203–1213. https://doi.org/10.1016/j.foreco.2010.12.035 (2011).
Google Scholar
Bigler, C. & Bugmann, H. Predicting the time of tree death using dendrochronological data. Ecol. Appl. 14, 902–914. https://doi.org/10.1890/03-5011 (2004).
Google Scholar
Larocque, G. R., Archambault, L. & Delisle, C. Development of the gap model ZELIG-CFS to predict the dynamics of North American mixed forest types with complex structures. Ecol. Model. 222, 2570–2583. https://doi.org/10.1016/j.ecolmodel.2010.08.035 (2011).
Google Scholar
Timofeeva, G. et al. Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment. Tree Physiol. 37, 1028–1041. https://doi.org/10.1093/treephys/tpx041 (2017).
Google Scholar
Neumann, M., Mues, V., Moreno, A., Hasenauer, H. & Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Change Biol. 23, 4788–4797. https://doi.org/10.1111/gcb.13724 (2017).
Google Scholar
Levesque, M. et al. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob. Change Biol. 19, 3184–3199. https://doi.org/10.1111/gcb.12268 (2013).
Google Scholar
Rigling, A. et al. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob. Change Biol. 19, 229–240. https://doi.org/10.1111/gcb.12038 (2013).
Google Scholar
Eyvindson, K., Repo, A. & Mönkkönen, M. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy. Forest Policy Econ 92, 119–127. https://doi.org/10.1016/j.forpol.2018.04.009 (2018).
Google Scholar
Mina, M. et al. Future ecosystem services from European mountain forests under climate change. J. Appl. Ecol. 54, 389–401. https://doi.org/10.1111/1365-2664.12772 (2017).
Google Scholar
Thom, D., Rammer, W. & Seidl, R. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecol. Monogr. 87, 665–684. https://doi.org/10.1002/ecm.1272 (2017).
Google Scholar
Blattert, C., Lemm, R., Thees, O., Lexer, M. J. & Hanewinkel, M. Management of ecosystem services in mountain forests: review of indicators and value functions for model based multi-criteria decision analysis. Ecol Indic 79, 391–409. https://doi.org/10.1016/j.ecolind.2017.04.025 (2017).
Google Scholar
Haeler, E. et al. Saproxylic species are linked to the amount and isolation of dead wood across spatial scales in a beech forest. Landscape Ecol. 36, 89–104. https://doi.org/10.1007/s10980-020-01115-4 (2021).
Google Scholar
Das, A. J., Stephenson, N. L. & Davis, K. P. Why do trees die? Characterizing the drivers of background tree mortality. Ecology 97, 2616–2627. https://doi.org/10.1002/ecy.1497 (2016).
Google Scholar
Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556. https://doi.org/10.2307/1310665 (1987).
Google Scholar
Huber, N., Bugmann, H. & Lafond, V. Global sensitivity analysis of a dynamic vegetation model: model sensitivity depends on successional time, climate and competitive interactions. Ecol. Model. 368, 377–390. https://doi.org/10.1016/j.ecolmodel.2017.12.013 (2018).
Google Scholar
Portier, J. et al. “Latent reserves”: a hidden treasure in National Forest Inventories. J. Ecol. 109, 369–383. https://doi.org/10.1111/1365-2745.13487 (2021).
Google Scholar
Kunstler, G. et al. Demographic performance of European tree species at their hot and cold climatic edges. J. Ecol. 109, 1041–1054. https://doi.org/10.1111/1365-2745.13533 (2021).
Google Scholar
Gutierrez, A. G., Snell, R. S. & Bugmann, H. Using a dynamic forest model to predict tree species distributions. Glob. Ecol. Biogeogr. 25, 347–358. https://doi.org/10.1111/geb.12421 (2016).
Google Scholar
Botkin, D. B., Janak, J. F. & Wallis, J. R. Some ecological consequences of a computer model of forest growth. J. Ecol. 60, 849–872. https://doi.org/10.2307/2258570 (1972).
Google Scholar
Bugmann, H. A review of forest gap models. Clim. Change 51, 259–305. https://doi.org/10.1023/A:1012525626267 (2001).
Google Scholar
Watt, A. S. Pattern and process in the plant community. J. Ecol. 35, 1–22. https://doi.org/10.2307/2256497 (1947).
Google Scholar
Shugart, H. H. & Smith, T. M. A review of forest patch models and their application to global change research. Clim. Change 34, 131–153. https://doi.org/10.1007/BF00224626 (1996).
Google Scholar
Monserud, R. A. Simulation of forest tree mortality. Forest Science 22, 438–444. https://doi.org/10.1093/forestscience/22.4.438 (1976).
Google Scholar
IPCC. Climate Change 2014: Impacts, adaptation, and vulnerability, Pt A: global and sectoral aspects. Climate Change 2014: Impacts, Adaptation, and Vulnerability, Pt A: Global and Sectoral Aspects, 1-1131, doi:https://doi.org/10.1017/CBO9781107415379 (2014).
Manusch, C., Bugmann, H., Heiri, C. & Wolf, A. Tree mortality in dynamic vegetation models: a key feature for accurately simulating forest properties. Ecol. Model. 243, 101–111. https://doi.org/10.1016/j.ecolmodel.2012.06.008 (2012).
Google Scholar
R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).
Source: Ecology - nature.com