in

Mitochondrial superoxide dismutase overexpression and low oxygen conditioning hormesis improve the performance of irradiated sterile males

  • 1.

    O’Brien, R. D. & Wolfe, R. S. Nongenetic effects of radiation. In Radiation, Radioactivity, and Insects (eds O’Brien, R. D. & Wolfe, R. S.) 23–54 (Academic Press Inc., Ltd., 1964).

    Chapter 

    Google Scholar 

  • 2.

    Bakri, A., Mehta, K. & Lance, D. R. Sterilizing insects with ionizing radiation. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 233–268 (Springer, 2005).

    Chapter 

    Google Scholar 

  • 3.

    Koval, T. M. Intrinsic resistance to the lethal effects of X-irradiation in insect and arachnid cells. Proc. Natl. Acad. Sci. USA 80, 4752–4755. https://doi.org/10.1073/pnas.80.15.4752 (1983).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Balock, J. W., Burditt, A. K. & Christenson, L. D. Effects of gamma radiation on various stages of three fruit fly species. J. Econ. Entomol. 56, 42–46 (1963).

    Article 

    Google Scholar 

  • 5.

    Hooper, G. H. S. The effect of ionizing radiation on reproduction. In Fruit Flies Their Biology, Natural Enemies, and Control (eds Robinson, A. S. & Hooper, G.) 153–164 (World Crop Pests, 1989).

    Google Scholar 

  • 6.

    Robinson, A. S. Genetic basis of the sterile insect technique. In The Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 95–114 (Springer, 2005).

    Chapter 

    Google Scholar 

  • 7.

    Lauzon, C. R. & Potter, S. E. Description of the irradiated and nonirradiated midgut of Ceratitis capitata Wiedemann (Diptera: Tephritidae) and Anastrepha ludens Loew (Diptera: Tephritidae) used for sterile insect technique. J. Pest Sci. 85, 217–222 (2012).

    Article 

    Google Scholar 

  • 8.

    Knipling, E. F. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48, 459–469 (1955).

    Article 

    Google Scholar 

  • 9.

    Riley, P. A. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65, 27–33 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Foshier, S. Cellular effects of radiation. In Essentials of Radiation, Biology, and Protection (ed. Foshier, S.) 43–62 (Delmar Thomson Learning, 2009).

    Google Scholar 

  • 11.

    Richardson, B. & Harper, M. E. Mitochondrial stress controls the radiosensitivity of the oxygen effect: implications for radiotherapy. Oncotarget 7, 21469–21483 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Monaghan, P., Metcalfe, N. B. & Torres, R. Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol. Lett. 12, 75–92 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Brieger, K., Schiavone, S., Miller, F. J. & Krause, K. H. Reactive oxygen species: from health to disease. Swiss Med. Wkly. https://doi.org/10.4414/smw.2012.13659 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D. & Wittzel, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. Lond. 266, 1–12. https://doi.org/10.1098/rspb.1999.0597 (1999).

    Article 

    Google Scholar 

  • 15.

    Metcalf, N. B. & Alonso-Alvarez, C. Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct. Ecol. 24, 984–996 (2010).

    Article 

    Google Scholar 

  • 16.

    Benoit, J. B. & López-Martínez, G. Role of conventional and unconventional stress proteins during the response of insects to traumatic environmental conditions. In Hemolymph Proteins and Functional Peptides: Recent Advances in Insects and Other Arthropods (eds Tufail, M. & Takeda, M.) 128–160 (Bentham Science Publishers, 2012).

    Google Scholar 

  • 17.

    Holbrook, F. R. & Fujimoto, M. S. Mating competitiveness of unirradiated and irradiated Mediterranean fruit flies. J. Econ. Entomol. 63, 1175–1176 (1970).

    Article 

    Google Scholar 

  • 18.

    Ohinata, K., Chambers, D. L., Fujimoto, M., Kashiwai, S. & Miyabara, R. Sterilization of the Mediterranean fruit fly by irradiation comparative mating effectiveness of treated pupae and adults. J. Econ. Entomol. 64, 781–784 (1971).

    Article 

    Google Scholar 

  • 19.

    Sharp, J. L. & Webb, J. C. Flight performance and signaling sound of irradiated or unirradiated Anastrepha suspensa. Proc. Hawaii Entomol. Soc. 22, 525–532 (1977).

    Google Scholar 

  • 20.

    Webb, J. C., Sivinski, J. & Smittle, B. J. Acoustical courtship signals and sexual success in irradiated Caribbean fruit flies (Anastrepha suspensa) (Diptera: Tephritidae). Fla. Entomol. 70, 103–109 (1987).

    Article 

    Google Scholar 

  • 21.

    Moreno, D. S., Sanchez, M., Robacker, D. C. & Worley, J. Mating competitiveness of irradiated Mexican fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 84, 1227–1234 (1991).

    Article 

    Google Scholar 

  • 22.

    Ponce, W. P., Nation, J. L., Emmel, T. C., Smittle, B. J. & Teal, P. E. A. Quantitative analysis of pheromone production in irradiated Caribbean fruit fly males, Anastrepha suspensa (Loew). J. Chem. Ecol. 19, 3045–3056 (1993).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Heath, R. R., Epsky, N. D., Dueben, B. D., Guzman, A. & Rade, L. E. Gamma radiation effect on production of four pheromonal components of male Mediterranean fruit flies (Diptera: Tephritidae). J. Econ. Entomol. 87, 904–909 (1994).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Lux, S. A. et al. Effects of irradiation on the courtship behavior of medfly (Diptera, Tephritidae) mass reared for the Sterile Insect Technique. Fla. Entomol. 85, 102–112 (2002).

    Article 

    Google Scholar 

  • 25.

    Barry, J. D., McInnis, D. O., Gates, D. & Morse, J. G. Effects of irradiation on Mediterranean fruit flies (Diptera:Tephritidae): emergence, survivorship, lure attraction and mating competition. J. Econ. Entomol. 96, 615–622 (2003).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Calkins, C. O. & Parker, A. G. Sterile insect quality. In The Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 269–296 (Springer, 2005).

    Chapter 

    Google Scholar 

  • 27.

    Lance, D. R. & McInnis, D. O. Biological basis of the sterile insect technique. In The Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A. et al.) 69–94 (Springer, 2005).

    Chapter 

    Google Scholar 

  • 28.

    Thoday, J. M. & Read, J. Effect of oxygen on the frequency of chromosome aberrations produced by X-rays. Nature 160, 608 (1947).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    FAO/IAEA/USDA. Product Quality Control for Sterile Mass-Reared and Released Tephritid Fruit Flies V 7.0 (IAEA, 2019).

  • 30.

    FAO/IAEA. Guideline for Packing, Shipping, Holding and Release of Sterile Flies in Area-Wide Fruit Fly Control Programmes (FAO, 2017).

  • 31.

    Langley, P. A. & Maly, H. Control of the Mediterranean fruit fly (Ceratitis capitata) using sterile males: effects of nitrogen and chilling during gamma-irradiation of puparia. Entomol. Exp. Appl. 14, 137–146 (1971).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Hooper, G. H. S. Competitiveness of gamma-sterilized males of the Mediterranean fruit fly: effects of irradiating pupal or adult stage and of irradiating pupae in nitrogen. J. Econ. Entomol. 64, 1364–1368 (1971).

    Article 

    Google Scholar 

  • 33.

    Hooper, G. H. S. Sterilization of Dacus cucumis French (Diptera: Tephritidae) by gamma radiation. I. Effect of dose on fertility, survival and competitiveness. J. Aust. Entomol. Soc. 14, 81–87 (1975).

    Article 

    Google Scholar 

  • 34.

    Zumreoglu, A., Ohinata, K., Fujimoto, M., Higa, H. & Harris, E. J. Gamma irradiation of the Mediterranean fruit fly: Effect of treatment of immature pupae in nitrogen on emergence, longevity, sterility, sexual competitiveness, mating ability, and pheromone production of males. J. Econ. Entomol. 72, 173–176 (1979).

    Article 

    Google Scholar 

  • 35.

    Fisher, K. Irradiation effects in air and in nitrogen on Mediterranean fruit fly (Diptera: Tephritidae) pupae in western Australia. J. Econ. Entomol. 90, 1609–1614 (1997).

    Article 

    Google Scholar 

  • 36.

    Rull, J., Birke, A., Ortega, R., Montoya, P. & Lopez, L. Quantity and safety vs. quality and performance: conflicting interests during mass rearing and transport affect the efficiency of sterile insect technique programs. Entomol. Exp. Appl. 142, 78–86 (2012).

    Article 

    Google Scholar 

  • 37.

    Lopez-Martinez, G. & Hahn, D. A. Short-term anoxic conditioning hormesis boosts antioxidant defenses, lowers oxidative damage following irradiation and enhances male sexual performance in the Caribbean fruit fly, Anastrepha suspensa. J. Exp. Biol. 215, 2150–2161 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Lopez-Martinez, G. & Hahn, D. A. Early life hormetic treatments decrease irradiation-induced oxidative damage, increase longevity, and enhance sexual performance during old age in the Caribbean fruit fly. PLoS ONE 9, e88128 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 39.

    Sivinski, J. Lekking and the small-scale distribution of the sexes in the Caribbean fruit fly, Anastrepha suspensa (Loew). J. Insect Behav. 2, 3–13 (1989).

    Article 

    Google Scholar 

  • 40.

    Teets, N. M. et al. Overexpression of an antioxidant enzyme improves male mating performance after stress in a lek-mating fruit fly. Proc. R. Soc. B. https://doi.org/10.1098/rspb.2019.0531 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Costantini, D. Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. J. Exp. Biol. https://doi.org/10.1242/jeb.194688 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Beehler, B. M. & Foster, M. S. Hotshots, hotspots, and female preference in the organization of lek mating system. Am. Nat. 131, 203–219 (1988).

    Article 

    Google Scholar 

  • 43.

    Shelly, T. E. Exposure to alpha-copaene and alpha-copaene-containing oils enhances mating success of male Mediterranean fruit flies (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 94, 497–502 (2001).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Field, S. A., Kaspi, R. & Yuval, B. Why do calling medflies (Diptera: Tephritidae) cluster? Assessing the empirical evidence for models of medfly lek evolution. Fla. Entomol. 85, 63–72 (2002).

    Article 

    Google Scholar 

  • 45.

    Widemo, F. & Owens, I. P. F. Lek size, male mating skew and the evolution of lekking. Nature 373, 148–151 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Cestari, C., Loiselle, B. A. & Pizo, M. A. Trade-offs in male display activity with lek size. PLoS ONE 11, e0162943 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Rendon, P., McInnis, D., Lance, D. & Stewart, J. Medfly (Diptera: Tephritidae) genetic sexing: large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J. Econ. Entomol. 97, 1547–1553 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Hendrichs, J., Robinson, A. S., Cayol, J. P. & Enkerlin, W. R. Medfly areawide Sterile Insect Technique programmes for prevention, suppression or eradication: the importance of mating behavior studies. Fla. Entomol. 85, 1–13 (2002).

    Article 

    Google Scholar 

  • 49.

    Pereira, R. et al. Improving sterile male performance in support of programmes integrating the sterile insect technique against fruit flies. J. Appl. Entomol. 137, S178–S190 (2013).

    Article 

    Google Scholar 

  • 50.

    Wiley, R. H. Errors, exaggerations and deception in animal communication. In Behavioural Mechanisms in Evolutionary Ecology (ed. Real, L. A.) 157–189 (University of Chicago Press, 1994).

    Google Scholar 

  • 51.

    Cotton, S., Small, J. & Pomiankowski, A. Sexual selection and condition-dependent mate preferences. Curr. Biol. 16, 755–765 (2006).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Sivinski, J. & Burk, T. Reproductive and mating behaviour. In Fruit Flies: Their Biology, Natural Enemies and Control (eds Robinson, A. & Hooper, G.) 343–351 (Elsevier, 1989).

    Google Scholar 

  • 53.

    Hooper, G. H. S. Sterilization of the Mediterranean fruit fly: a review of laboratory data. in Sterile male technique for the control of fruit flies 3–12 (IAEA, 1970).

  • 54.

    Collins, S. R., Weldon, C. W., Banos, C. & Taylor, P. W. Effects of irradiation dose rate on quality and sterility of Queensland fruit flies, Bactrocera tryoni (Froggatt). J. Appl. Entomol. 132, 398–405 (2008).

    Article 

    Google Scholar 

  • 55.

    Turrens, J. F. Mitochondrial formation of reactive oxygen species. J. Physiol. Lond. 552, 335–344 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Zhou, Y., Hu, L. F., Wu, H., Jiang, L. W. & Liu, S. Q. Genome-wide identification and transcriptional expression analysis of cucumber superoxide dismutase (SOD) family in response to various abiotic stresses. Int. J. Genomics https://doi.org/10.1155/2017/7243973 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Lesser, M. P. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu. Rev. Physiol. 68, 253–278 (2006).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Martinez-Lendech, N., Golab, M. J., Osorio-Beristain, M. & Contreras-Garduno, J. Sexual signals reveal males’ oxidative stress defences: testing this hypothesis in an invertebrate. Funct. Ecol. 32, 937–947 (2018).

    Article 

    Google Scholar 

  • 59.

    Romero-Haro, A. A. & Alonso-Alvarez, C. The level of an intracellular antioxidant during development determines the adult phenotype in a bird species: a potential organizer role for glutathione. Am. Nat. 185, 390–405 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Nestel, D., Nemny-Lavy, E., Islam, S. M., Wornoayporn, V. & Cáceres, C. Effects of pre-irradiation conditioning of medfly pupae (Diptera: Tephritidae): hypoxia and quality of sterile males. Fla. Entomol. 90, 80–87 (2007).

    Article 

    Google Scholar 

  • 61.

    Bartholomew, N. R., Burdett, J. M., VandenBrooks, J. M., Quinlan, M. C. & Call, G. B. Impaired climbing and flight behaviour in Drosophila melanogaster following carbon dioxide anaesthesia. Sci. Rep. 5, 15298 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Hermes-Lima, M. et al. Preparation for oxidative stress under hypoxia and metabolic depression: revisiting the proposal two decades later. Free Radic. Biol. Med. 89, 1122–1143 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 63.

    Moreira, D. C., Venancio, L. P. R., Sabino, M. A. C. T. & Hermes-Lima, M. How widespread is preparation for oxidative stress in the animal kingdom?. Comp. Biochem. Physiol. A 200, 64–78 (2016).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Giraud-Billoud, M. et al. Twenty years of the ‘preparation for oxidative stress’ (POS) theory: ecophysiological advantages and molecular strategies. Comp. Biochem. Physiol. A 234, 36–49 (2019).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Hermes-Lima, M. & Zenteno-Savin, T. Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp. Biochem. Phys. C 133, 537–556 (2002).

    Article 

    Google Scholar 

  • 66.

    Bates, D. et al. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    ADS 
    Article 

    Google Scholar 

  • 67.

    Length, R. V. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package Version 1.6.2-1 (2021). https://CRAN.R-project.org/package=emmeans.

  • 68.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2021). https://www.R-project.org/.

  • 69.

    RStudio Team. RStudio: Integrated Development Environment for R. RStudio (PBC, Boston, 2021). http://www.rstudio.com/.

  • 70.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).

    Google Scholar 


  • Source: Ecology - nature.com

    The influence of different morphological units on the turbulent flow characteristics in step-pool mountain streams

    Shared patterns in body size declines among crinoids during the Palaeozoic extinction events