in

Extending the natural adaptive capacity of coral holobionts

  • 1.

    Fisher, R. et al. Species richness on coral reefs and the pursuit of convergent global estimates. Curr. Biol. 25, 500–505 (2015).

    Article 

    Google Scholar 

  • 2.

    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).

    Article 

    Google Scholar 

  • 3.

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).

    Article 

    Google Scholar 

  • 4.

    Wilkinson, C. Status of Coral Reefs of the World: 2008 (Global Coral Reef Monitoring Network, 2008).

  • 5.

    Spalding, M. et al. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82, 104–113 (2017).

    Article 

    Google Scholar 

  • 6.

    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999). This paper projects loss and degradation of coral reefs on a global scale before it became common knowledge.

    Google Scholar 

  • 7.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    Article 

    Google Scholar 

  • 8.

    Porter, J. W. & Meier, O. W. Quantification of loss and change in Floridian reef coral populations. Am. Zool. 32, 625–640 (1992).

    Article 

    Google Scholar 

  • 9.

    Ruzicka, R. R. et al. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar. Ecol. Prog. Ser. 489, 125–141 (2013).

    Article 

    Google Scholar 

  • 10.

    Somerfield, P. J. et al. Changes in coral reef communities among the Florida Keys, 1996–2003. Coral Reefs 27, 951–965 (2008).

    Article 

    Google Scholar 

  • 11.

    Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).

    Article 

    Google Scholar 

  • 12.

    Suggett, D. J. & Smith, D. J. Coral bleaching patterns are the outcome of complex biological and environmental networking. Global Change Biol. https://doi.org/10.1111/gcb.14871 (2019).

    Article 

    Google Scholar 

  • 13.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Article 

    Google Scholar 

  • 14.

    Lesser, M. P. in Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 405–419 (Springer, 2011).

  • 15.

    Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl Acad. Sci. USA 118, e2022653118 (2021). This paper demonstrates that algal symbionts cease photosynthate transfer to coral hosts under heat stress long before visual signs of bleaching (symbiont loss) become evident.

    Article 

    Google Scholar 

  • 16.

    Allen, M. R. et al. in Sustainable Development, and Efforts to Eradicate Poverty (eds Masson-Delmotte, V. et al.) 41–91 (IPCC, 2018).

  • 17.

    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    Article 

    Google Scholar 

  • 18.

    Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Chang. 10, 296–307 (2020).

    Article 

    Google Scholar 

  • 19.

    Durack, P.J., Wijffels, S.E. & Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336, 455-458 (2012).

    Article 

    Google Scholar 

  • 20.

    Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral–Symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).

    Article 

    Google Scholar 

  • 21.

    Muller, E. M., Sartor, C., Alcaraz, N. I. & van Woesik, R. Spatial Epidemiology of the Stony-Coral-Tissue-Loss Disease in Florida. Front. Mar. Sci. 7, 163 (2020).

    Article 

    Google Scholar 

  • 22.

    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).

    Article 

    Google Scholar 

  • 23.

    Nyström, M., Folke, C. & Moberg, F. Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol. Evol. 15, 413–417 (2000).

    Article 

    Google Scholar 

  • 24.

    Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2012).

    Article 

    Google Scholar 

  • 25.

    D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sust. 7, 82–93 (2014).

    Article 

    Google Scholar 

  • 26.

    Thurber, R. L. V. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).

    Article 

    Google Scholar 

  • 27.

    Donovan, M. K. et al. Local conditions magnify coral loss after marine heatwaves. Science 372, 977–980 (2021).

    Article 

    Google Scholar 

  • 28.

    Climate change widespread, rapid, and intensifying. IPCC (9 August 2021); https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr.

  • 29.

    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).

    Article 

    Google Scholar 

  • 30.

    Kleypas, J. et al. Designing a blueprint for coral reef survival. Biol. Conserv. 257, 109107 (2021).

    Article 

    Google Scholar 

  • 31.

    Gattuso, J.-P. et al. Ocean solutions to address climate change and Its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).

    Article 

    Google Scholar 

  • 32.

    Knowlton, N. et al. Rebuilding Coral Reefs: A Decadal Grand Challenge (International Coral Reef Society and Future Earth Coasts, 2021) https://doi.org/10.53642/NRKY9386.

  • 33.

    Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C. & Possingham, H. P. Securing a long-term future for coral reefs. Trends Ecol. Evol. 33, 936–944 (2018).

    Article 

    Google Scholar 

  • 34.

    Zoccola, D. et al. The World Coral Conservatory (WCC): a Noah’s ark for corals to support survival of reef ecosystems. PLoS Biol. 18, e3000823 (2020).

    Article 

    Google Scholar 

  • 35.

    Kleinhaus, K. et al. Science, diplomacy, and the Red Sea’s unique coral reef: it’s time for action. Front. Mar. Sci. 7, 90 (2020).

    Article 

    Google Scholar 

  • 36.

    van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

    Article 

    Google Scholar 

  • 37.

    Baums, I. B. et al. Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecol. Appl. 29, e01978 (2019).

    Article 

    Google Scholar 

  • 38.

    Peixoto, R. S., Sweet, M. & Bourne, D. G. Customized medicine for corals. Front. Mar. Sci. 6, 686 (2019).

    Article 

    Google Scholar 

  • 39.

    Rinkevich, B. The active reef restoration toolbox is a vehicle for coral resilience and adaptation in a changing world. J. Mar. Sci. Eng. 7, 201 (2019).

    Article 

    Google Scholar 

  • 40.

    Boström-Einarsson, L. et al. Coral restoration — a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).

    Article 

    Google Scholar 

  • 41.

    Voolstra, C. R. et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob. Chang. Biol. 26, 4328–4343 (2020). This paper highlights the potential of mobile acute heat stress assays to resolve fine-scale differences in coral thermotolerance, suitable for large-scale identification of resilient genotypes/reefs for conservation and restoration approaches.

    Article 

    Google Scholar 

  • 42.

    Parkinson, J. E. et al. Molecular tools for coral reef restoration: beyond biomarker discovery. Conserv. Lett. 13, e12687 (2020).

    Article 

    Google Scholar 

  • 43.

    Voolstra, C. R. et al. Contrasting heat stress response patterns of coral holobionts across the Red Sea suggest distinct mechanisms of thermal tolerance. Mol. Ecol. https://doi.org/10.1111/mec.16064 (2021).

    Article 

    Google Scholar 

  • 44.

    Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl Acad. Sci. USA 116, 10586–10591 (2019).

    Article 

    Google Scholar 

  • 45.

    Sweet, M. & Brown, B. in Oceanography and Marine Biology — An Annual Review (eds Hughes R.N. et al.) 271–314 (CRC, 2016).

  • 46.

    Voolstra, C. R. & Ziegler, M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays 42, e2000004 (2020). This paper proposes microbiome flexibility as a mechanism to aid adaptation to environmental change and posits that capacity for dynamic restructuring of the microbiome is host specific.

    Article 

    Google Scholar 

  • 47.

    Jaspers, C. et al. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133, 81–87 (2019).

    Article 

    Google Scholar 

  • 48.

    Torda, G. et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Chang. 7, 627–636 (2017).

    Article 

    Google Scholar 

  • 49.

    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017). This paper provides the first putative link between bacterial community composition and coral heat tolerance.

    Article 

    Google Scholar 

  • 50.

    Morgans, C. A., Hung, J. Y., Bourne, D. G. & Quigley, K. M. Symbiodiniaceae probiotics for use in bleaching recovery. Restor. Ecol. 28, 282–288 (2020).

    Article 

    Google Scholar 

  • 51.

    Liew, Y. J. et al. Intergenerational epigenetic inheritance in reef-building corals. Nat. Clim. Chang. 10, 254–259 (2020).

    Article 

    Google Scholar 

  • 52.

    Craggs, J. et al. Inducing broadcast coral spawning ex situ: closed system mesocosm design and husbandry protocol. Ecol. Evol. 7, 11066–11078 (2017).

    Article 

    Google Scholar 

  • 53.

    Camp, E. F., Schoepf, V. & Suggett, D. J. How can “super corals” facilitate global coral reef survival under rapid environmental and climatic change? Glob. Chang. Biol. 24, 2755–2757 (2018).

    Article 

    Google Scholar 

  • 54.

    Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021). This paper reviews coral probiotics and critical assessment of applicability.

    Article 

    Google Scholar 

  • 55.

    Doering, T. et al. Towards enhancing coral heat tolerance: a “microbiome transplantation” treatment using inoculations of homogenized coral tissues. Microbiome 9, 102 (2021).

    Article 

    Google Scholar 

  • 56.

    Howells, E. J. et al. Enhancing the heat tolerance of reef-building corals to future warming. Sci. Adv. 7 (2021).

  • 57.

    Devlin-Durante, M. K., Miller, M. W., Caribbean Acropora Research Group, Precht, W. F. & Baums, I. B. How old are you? Genet age estimates in a clonal animal. Mol. Ecol. 25, 5628–5646 (2016).

    Article 

    Google Scholar 

  • 58.

    Irwin, A. et al. Age and intraspecific diversity of resilient Acropora communities in Belize. Coral Reefs 36, 1111–1120 (2017).

    Article 

    Google Scholar 

  • 59.

    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014). This paper demonstrates that acclimation and adaptation contribute to coral thermal tolerance and climate resistance at about equal contribution.

    Article 

    Google Scholar 

  • 60.

    Barott, K. L. et al. Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions. Proc. Natl Acad. Sci. USA 118, e2025435118 (2021).

    Article 

    Google Scholar 

  • 61.

    Thomas, L., López, E. H., Morikawa, M. K. & Palumbi, S. R. Transcriptomic resilience, symbiont shuffling, and vulnerability to recurrent bleaching in reef-building corals. Mol. Ecol. 28, 3371–3382 (2019).

    Article 

    Google Scholar 

  • 62.

    Bellantuono, A. J., Granados-Cifuentes, C., Miller, D. J., Hoegh-Guldberg, O. & Rodriguez-Lanetty, M. Coral thermal tolerance: tuning gene expression to resist thermal stress. PLoS ONE 7, e50685 (2012).

    Article 

    Google Scholar 

  • 63.

    Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl Acad. Sci. USA 110, 1387–1392 (2013).

    Article 

    Google Scholar 

  • 64.

    Savary, R. et al. Fast and pervasive transcriptomic resilience and acclimation of extremely heat-tolerant coral holobionts from the northern Red Sea. Proc. Natl Acad. Sci. USA 118, e2023298118 (2021).

    Article 

    Google Scholar 

  • 65.

    Liew, Y. J. et al. Epigenome-associated phenotypic acclimatization to ocean acidification in a reef-building coral. Sci. Adv. 4, eaar8028 (2018).

    Article 

    Google Scholar 

  • 66.

    Durante, M. K., Baums, I. B., Williams, D. E., Vohsen, S. & Kemp, D. W. What drives phenotypic divergence among coral clonemates of Acropora palmata? Mol. Ecol. 28, 3208–3224 (2019).

    Article 

    Google Scholar 

  • 67.

    Rodríguez-Casariego, J. A. et al. Genome-Wide DNA Methylation Analysis Reveals a Conserved Epigenetic Response to Seasonal Environmental Variation in the Staghorn Coral Acropora cervicornis. Front. Mar. Sci. 7, 822 https://doi.org/10.3389/fmars.2020.560424 (2020).

  • 68.

    Putnam, H. M. & Gates, R. D. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J. Exp. Biol. 218, 2365–2372 (2015).

    Article 

    Google Scholar 

  • 69.

    Putnam, H. M., Davidson, J. M. & Gates, R. D. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol. Appl. 9, 1165–1178 (2016).

    Article 

    Google Scholar 

  • 70.

    Putnam, H. M., Ritson-Williams, R., Cruz, J. A., Davidson, J. M. & Gates, R. D. Environmentally-induced parental or developmental conditioning influences coral offspring ecological performance. Sci. Rep. 10, 13664 (2020).

    Article 

    Google Scholar 

  • 71.

    Drury, C. et al. Genomic variation among populations of threatened coral: Acropora cervicornis. BMC Genomics 17, 286 (2016).

    Article 

    Google Scholar 

  • 72.

    Bay, R. A., Rose, N. H., Logan, C. A. & Palumbi, S. R. Genomic models predict successful coral adaptation if future ocean warming rates are reduced. Sci. Adv. 3, e1701413 (2017).

    Article 

    Google Scholar 

  • 73.

    Prada, C. et al. Empty niches after extinctions increase population sizes of modern corals. Curr. Biol. 26, 3190–3194 (2016).

    Article 

    Google Scholar 

  • 74.

    Robitzch, V., Banguera-Hinestroza, E., Sawall, Y., Al-Sofyani, A. and Voolstra, C.R., 2015. Absence of genetic differentiation in the coral Pocillopora verrucosa along environmental gradients of the Saudi Arabian Red Sea. Front. Mar. Sci. 2, 5 (2015).

    Article 

    Google Scholar 

  • 75.

    Van Oppen, M. J. H., Souter, P., Howells, E. J., Heyward, A. & Berkelmans, R. Novel genetic diversity through somatic mutations: fuel for adaptation of reef corals? Diversity 3, 405–423 (2011).

    Article 

    Google Scholar 

  • 76.

    Vasquez Kuntz, K. L. et al. Juvenile corals inherit mutations acquired during the parent’s lifespan. Preprint at bioRxiv https://doi.org/10.1101/2020.10.19.345538 (2020).

    Article 

    Google Scholar 

  • 77.

    Matz, M. V., Treml, E. A., Aglyamova, G. V. & Bay, L. K. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLoS Genet. 14, e1007220 (2018).

    Article 

    Google Scholar 

  • 78.

    Guest, J. R. et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7, e33353 (2012).

    Article 

    Google Scholar 

  • 79.

    Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6, e5347 (2018).

    Article 

    Google Scholar 

  • 80.

    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).

    Article 

    Google Scholar 

  • 81.

    Camp, E. F. et al. The future of coral reefs subject to rapid climate change: lessons from natural extreme environments. Front. Mar. Sci. 5, 4 (2018).

    Article 

    Google Scholar 

  • 82.

    Oliver, T. A. & Palumbi, S. R. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30, 429–440 (2011).

    Article 

    Google Scholar 

  • 83.

    Morgan, K. M., Perry, C. T., Smithers, S. G., Johnson, J. A. & Daniell, J. J. Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings. Sci. Rep. 6, 29616 (2016).

    Article 

    Google Scholar 

  • 84.

    Middlebrook, R., Hoegh-Guldberg, O. & Leggat, W. The effect of thermal history on the susceptibility of reef-building corals to thermal stress. J. Exp. Biol. 211, 1050–1056 (2008).

    Article 

    Google Scholar 

  • 85.

    Brown, B. E., Dunne, R. P., Edwards, A. J., Sweet, M. J. & Phongsuwan, N. Decadal environmental ‘memory’ in a reef coral? Mar. Biol. 162, 479–483 (2015).

    Article 

    Google Scholar 

  • 86.

    Dixon, G., Liao, Y., Bay, L. K. & Matz, M. V. Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proc. Natl Acad. Sci. USA 115, 13342–13346 (2018).

    Article 

    Google Scholar 

  • 87.

    Humanes, A. et al. An experimental framework for selectively breeding corals for assisted evolution. Front. Mar. Sci. 8, 626 (2021).

    Article 

    Google Scholar 

  • 88.

    Dixon, G. B. et al. Genomic determinants of coral heat tolerance across latitudes. Science 348, 1460–1462 (2015). This paper demonstrates applicability of assisted evolution via selective breeding.

    Article 

    Google Scholar 

  • 89.

    van Oppen, M. J. H. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Chang. Biol. 23, 3437–3448 (2017).

    Article 

    Google Scholar 

  • 90.

    Fukami, H. et al. Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427, 832–835 (2004).

    Article 

    Google Scholar 

  • 91.

    Voolstra, C. R. et al. Consensus guidelines for advancing coral holobiont genome and specimen voucher deposition. Front. Mar. Sci. 8, 1029 (2021).

    Article 

    Google Scholar 

  • 92.

    Seneca, F. O. & Palumbi, S. R. The role of transcriptome resilience in resistance of corals to bleaching. Mol. Ecol. 24, 1467–1484 (2015).

    Article 

    Google Scholar 

  • 93.

    Evensen, N. R., Fine, M., Perna, G., Voolstra, C. R. & Barshis, D. J. Remarkably high and consistent tolerance of a Red Sea coral to acute and chronic thermal stress exposures. Limnol. Oceanogr. https://doi.org/10.1002/lno.11715 (2021).

    Article 

    Google Scholar 

  • 94.

    Cleves, P. A., Strader, M. E., Bay, L. K., Pringle, J. R. & Matz, M. V. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc. Natl Acad. Sci. USA 115, 5235–5240 (2018).

    Article 

    Google Scholar 

  • 95.

    Cleves, P. A. et al. Reduced thermal tolerance in a coral carrying CRISPR-induced mutations in the gene for a heat-shock transcription factor. Proc. Natl Acad. Sci. USA 117, 28899–28905 (2020).

    Article 

    Google Scholar 

  • 96.

    Fuller, Z. L. et al. Population genetics of the coral Acropora millepora: toward genomic prediction of bleaching. Science 369, eaba4674 (2020).

    Article 

    Google Scholar 

  • 97.

    Yetsko, K. et al. Genetic differences in thermal tolerance among colonies of threatened coral Acropora cervicornis: potential for adaptation to increasing temperature. Mar. Ecol. Prog. Ser. 646, 45–68 (2020).

    Article 

    Google Scholar 

  • 98.

    Kenkel, C. D., Almanza, A. T. & Matz, M. V. Fine-scale environmental specialization of reef-building corals might be limiting reef recovery in the Florida Keys. Ecology 96, 3197–3212 (2015).

    Article 

    Google Scholar 

  • 99.

    D’Angelo, C. et al. Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf. ISME J. 9, 2551–2560 (2015).

    Article 

    Google Scholar 

  • 100.

    Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).

    Article 

    Google Scholar 

  • 101.

    Quigley, K. M., Bay, L. K. & van Oppen, M. J. H. Genome-wide SNP analysis reveals an increase in adaptive genetic variation through selective breeding of coral. Mol. Ecol. 29, 2176–2188 (2020).

    Article 

    Google Scholar 

  • 102.

    Craggs, J., Guest, J., Bulling, M. & Sweet, M. Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship. Sci. Rep. 9, 12984 (2019).

    Article 

    Google Scholar 

  • 103.

    Quigley, K. M. et al. Variability in fitness trade-offs amongst coral juveniles with mixed genetic backgrounds held in the wild. Front. Mar. Sci. 8, 161 (2021).

    Article 

    Google Scholar 

  • 104.

    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e6 (2018). This paper provides a revised coral symbiont taxonomy and shows that Symbiodiniaceae diversification coincides with the radiation of reef-building corals.

    Article 

    Google Scholar 

  • 105.

    Muscatine, L. The role of symbiotic algae in carbon and energy flux in reef corals. Coral Reefs 25, 75–87 (1990).

    Google Scholar 

  • 106.

    Trench, R. K. Microalgal–invertebrate symbiosis, a review. Endocytobiosis Cell Res. 9, 135–175 (1993).

    Google Scholar 

  • 107.

    Pogoreutz, C. et al. in Cellular Dialogues in the Holobiont (eds Bosch, T. C. G. & Hadfield, M. G.) 91–118 (CRC, 2020). https://doi.org/10.1201/9780429277375-7.

  • 108.

    Hume, B. C. C. et al. SymPortal: a novel analytical framework and platform for coral algal symbiont next-generation sequencing ITS2 profiling. Mol. Ecol. Resour. 19, 1063–1080 (2019).

    Article 

    Google Scholar 

  • 109.

    Decelle, J. et al. Worldwide occurrence and activity of the reef-building coral symbiont Symbiodinium in the open ocean. Curr. Biol. 28, 3625–3633.e3 (2018).

    Article 

    Google Scholar 

  • 110.

    Aranda, M. et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6, 39734 (2016).

    Article 

    Google Scholar 

  • 111.

    González-Pech, R. A., Bhattacharya, D., Ragan, M. A. & Chan, C. X. Genome evolution of coral reef symbionts as intracellular residents. Trends Ecol. Evol. 34, 799–806 (2019).

    Article 

    Google Scholar 

  • 112.

    Hume, B. C. C., Mejia-Restrepo, A., Voolstra, C. R. & Berumen, M. L. Fine-scale delineation of Symbiodiniaceae genotypes on a previously bleached central Red Sea reef system demonstrates a prevalence of coral host-specific associations. Coral Reefs 39, 583–601 (2020).

    Article 

    Google Scholar 

  • 113.

    Howells, E. J. et al. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 29, 899–911 (2020).

    Article 

    Google Scholar 

  • 114.

    Turnham, K. E., Wham, D. C., Sampayo, E. & LaJeunesse, T. C. Mutualistic microalgae co-diversify with reef corals that acquire symbionts during egg development. ISME J. https://doi.org/10.1038/s41396-021-01007-8 (2021).

    Article 

    Google Scholar 

  • 115.

    Grottoli, A. G. et al. The cumulative impact of annual coral bleaching can turn some coral species winners into losers. Glob. Chang. Biol. 20, 3823–3833 (2014).

    Article 

    Google Scholar 

  • 116.

    LaJeunesse, T. C., Smith, R. T., Finney, J. & Oxenford, H. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral ‘bleaching’ event. Proc. R. Soc. B Biol. Sci. 276, 4139–4148 (2009).

    Article 

    Google Scholar 

  • 117.

    Grégoire, V., Schmacka, F., Coffroth, M. A. & Karsten, U. Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae). J. Appl. Phycol. 29, 1893–1905 (2017).

    Article 

    Google Scholar 

  • 118.

    Quigley, K. M., Baker, A. C., Coffroth, M. A., Willis, B. L. & van Oppen, M. J. H. in Coral Bleaching: Patterns, Processes, Causes and Consequences (eds van Oppen, M. J. H. & Lough, J. M.) 111–151 (Springer International, 2018).

  • 119.

    Ziegler, M., Arif, C. & Voolstra, C. R. in Coral Reefs of the Red Sea (eds Voolstra, C. R. & Berumen, M. L.) 69–89 (Springer International, 2019).

  • 120.

    Suggett, D. J., Warner, M. E. & Leggat, W. Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. Trends Ecol. Evol. 32, 735–745 (2017).

    Article 

    Google Scholar 

  • 121.

    Hume, B. C. C. et al. Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc. Natl Acad. Sci. USA 113, 4416–4421 (2016).

    Article 

    Google Scholar 

  • 122.

    Ochsenkühn, M. A., Röthig, T., D’Angelo, C., Wiedenmann, J. & Voolstra, C. R. The role of floridoside in osmoadaptation of coral-associated algal endosymbionts to high-salinity conditions. Sci. Adv. 3, e1602047 (2017).

    Article 

    Google Scholar 

  • 123.

    Baumgarten, S. et al. Integrating microRNA and mRNA expression profiling in Symbiodinium microadriaticum, a dinoflagellate symbiont of reef-building corals. BMC Genomics 14, 704 (2013).

    Article 

    Google Scholar 

  • 124.

    Klein, S. G. et al. Symbiodinium mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian. Glob. Chang. Biol. 23, 3690–3703 (2017).

    Article 

    Google Scholar 

  • 125.

    Liew, Y. J., Li, Y., Baumgarten, S., Voolstra, C. R. & Aranda, M. Condition-specific RNA editing in the coral symbiont Symbiodinium microadriaticum. PLoS Genet. 13, e1006619 (2017).

    Article 

    Google Scholar 

  • 126.

    Warner, M. E. & Suggett, D. J. in The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters (eds Goffredo, S. & Dubinsky, Z.) 489–509 (Springer International, 2016).

  • 127.

    Levin, R. A. et al. Sex, scavengers, and chaperones: transcriptome secrets of divergent symbiodinium thermal tolerances. Mol. Biol. Evol. 33, 3032 (2016).

    Article 

    Google Scholar 

  • 128.

    Nand, A. et al. Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum. Nat. Genet. 53, 618–629 (2021).

    Article 

    Google Scholar 

  • 129.

    Buerger, P. et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci. Adv. 6, eaba2498 (2020).

    Article 

    Google Scholar 

  • 130.

    Thornhill, D. J., Howells, E. J., Wham, D. C., Steury, T. D. & Santos, S. R. Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Mol. Ecol. 26, 2640–2659 (2017).

    Article 

    Google Scholar 

  • 131.

    LaJeunesse, T. C. et al. Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J. Biogeogr. 37, 785–800 (2010).

    Article 

    Google Scholar 

  • 132.

    Parkinson, J. E. et al. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium. Genome Biol. Evol. 8, 665–680 (2016).

    Article 

    Google Scholar 

  • 133.

    Baker, A. C. Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 34, 661–689 (2003).

    Article 

    Google Scholar 

  • 134.

    Boulotte, N. M. et al. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J. 10, 2693–2701 (2016).

    Article 

    Google Scholar 

  • 135.

    Ziegler, M., Eguíluz, V. M., Duarte, C. M. & Voolstra, C. R. Rare symbionts may contribute to the resilience of coral–algal assemblages. ISME J. 12, 161–172 (2018).

    Article 

    Google Scholar 

  • 136.

    Mies, M., Sumida, P. Y. G., Rädecker, N. & Voolstra, C. R. Marine Invertebrate Larvae Associated with Symbiodinium: A Mutualism from the Start? Front. Ecol. Evol. 5, 56 https://www.frontiersin.org/article/10.3389/fevo.2017.00056 (2017).

  • 137.

    Cumbo, V. R., Baird, A. H. & van Oppen, M. J. H. The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32, 111–120 (2013).

    Article 

    Google Scholar 

  • 138.

    Quigley, K. M., Willis, B. L. & Bay, L. K. Heritability of the Symbiodinium community in vertically- and horizontally-transmitting broadcast spawning corals. Sci. Rep. 7, 8219 (2017).

    Article 

    Google Scholar 

  • 139.

    National Academies of Sciences, Engineering, and Medicine. A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs (National Academies Press, 2019). This book reviews restoration interventions, detailing latest emerging technologies and approaches.

  • 140.

    Quigley, K. M., Randall, C. J., van Oppen, M. J. H. & Bay, L. K. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biol. Open 9, bio047316 (2020).

    Article 

    Google Scholar 

  • 141.

    McIlroy, S. E. et al. The effects of Symbiodinium (Pyrrhophyta) identity on growth, survivorship, and thermal tolerance of newly settled coral recruits. J. Phycol. 52, 1114–1124 (2016).

    Article 

    Google Scholar 

  • 142.

    Thornhill, D. J., Daniel, M. W., LaJeunesse, T. C., Schmidt, G. W. & Fitt, W. K. Natural infections of aposymbiotic Cassiopea xamachana scyphistomae from environmental pools of Symbiodinium. J. Exp. Mar. Bio. Ecol. 338, 50–56 (2006).

    Article 

    Google Scholar 

  • 143.

    Coffroth, M. A., Lewis, C. F., Santos, S. R. & Weaver, J. L. Environmental populations of symbiotic dinoflagellates in the genus Symbiodinium can initiate symbioses with reef cnidarians. Curr. Biol. 16, R985–R987 (2006).

    Article 

    Google Scholar 

  • 144.

    Fujise, L. et al. Unlocking the phylogenetic diversity, primary habitats, and abundances of free-living Symbiodiniaceae on a coral reef. Mol. Ecol. 30, 343–360 (2021).

    Article 

    Google Scholar 

  • 145.

    Levin, R. A. et al. Engineering strategies to decode and enhance the genomes of coral symbionts. Front. Microbiol. 8, 1220 (2017).

    Article 

    Google Scholar 

  • 146.

    Chen, J. E., Barbrook, A. C., Cui, G., Howe, C. J. & Aranda, M. The genetic intractability of Symbiodinium microadriaticum to standard algal transformation methods. PLoS ONE 14, e0211936 (2019).

    Article 

    Google Scholar 

  • 147.

    Sheykhali, S. et al. Robustness to extinction and plasticity derived from mutualistic bipartite ecological networks. Sci. Rep. 10, 9783 (2020).

    Article 

    Google Scholar 

  • 148.

    Quigley, K. M., Bay, L. K. & Willis, B. L. Leveraging new knowledge of Symbiodinium community regulation in corals for conservation and reef restoration. Mar. Ecol. Prog. Ser. 600, 245–253 (2018).

    Article 

    Google Scholar 

  • 149.

    LaJeunesse, T. C. et al. Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance. Proc. R. Soc. B: Biol. Sci. 277, 2925–2934 (2010).

    Article 

    Google Scholar 

  • 150.

    Poland, D. M. & Coffroth, M. A. Trans-generational specificity within a cnidarian–algal symbiosis. Coral Reefs 36, 119–129 (2017).

    Article 

    Google Scholar 

  • 151.

    Sampayo, E. M. et al. Coral symbioses under prolonged environmental change: living near tolerance range limits. Sci. Rep. 6, 36271 (2016).

    Article 

    Google Scholar 

  • 152.

    Abrego, D., van Oppen, M. J. H. & Willis, B. L. Onset of algal endosymbiont specificity varies among closely related species of Acropora corals during early ontogeny. Mol. Ecol. 18, 3532–3543 (2009).

    Article 

    Google Scholar 

  • 153.

    Pettay, D. T., Wham, D. C., Smith, R. T., Iglesias-Prieto, R. & LaJeunesse, T. C. Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. Proc. Natl Acad. Sci. USA 112, 7513–7518 (2015).

    Article 

    Google Scholar 

  • 154.

    Qin, Z. et al. Diversity of Symbiodiniaceae in 15 coral species from the Southern South China Sea: potential relationship with coral thermal adaptability. Front. Microbiol. 10, 2343 (2019).

    Article 

    Google Scholar 

  • 155.

    Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 6097 (2020).

    Article 

    Google Scholar 

  • 156.

    Lim, E.-P. et al. Continuation of tropical Pacific Ocean temperature trend may weaken extreme El Niño and its linkage to the Southern Annular Mode. Sci. Rep. 9, 17044 (2019).

    Article 

    Google Scholar 

  • 157.

    Pollock, F. J. et al. Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis. PeerJ 5, e3732 (2017).

    Article 

    Google Scholar 

  • 158.

    McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).

    Article 

    Google Scholar 

  • 159.

    Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. Zoology 114, 185–190 (2011).

    Article 

    Google Scholar 

  • 160.

    Robbins, S. J. et al. A genomic view of the reef-building coral Porites lutea and its microbial symbionts. Nat. Microbiol. 4, 2090–2100 (2019).

    Article 

    Google Scholar 

  • 161.

    Bang, C. et al. Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127, 1–19 (2018).

    Article 

    Google Scholar 

  • 162.

    Williams, A. D., Brown, B. E., Putchim, L. & Sweet, M. J. Age-related shifts in bacterial diversity in a reef coral. PLoS ONE 10, e0144902 (2015).

    Article 

    Google Scholar 

  • 163.

    Roder, C., Bayer, T., Aranda, M., Kruse, M. & Voolstra, C. R. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol. Ecol. 24, 3501–3511 (2015).

    Article 

    Google Scholar 

  • 164.

    Sweet, M. J., Brown, B. E., Dunne, R. P., Singleton, I. & Bulling, M. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs 36, 815–828 (2017).

    Article 

    Google Scholar 

  • 165.

    Ziegler, M. et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat. Commun. 10, 3092 (2019).

    Article 

    Google Scholar 

  • 166.

    Reshef, L., Koren, O., Loya, Y., Zilber-Rosenberg, I. & Rosenberg, E. The coral probiotic hypothesis. Environ. Microbiol. 8, 2068–2073 (2006).

    Article 

    Google Scholar 

  • 167.

    Pogoreutz, C. et al. Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol. Evol. 8, 2240–2252 (2018).

    Article 

    Google Scholar 

  • 168.

    Neave, M. J. et al. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J. 11, 186–200 (2017).

    Article 

    Google Scholar 

  • 169.

    Neave, M. J., Apprill, A., Ferrier-Pagès, C. & Voolstra, C. R. Diversity and function of prevalent symbiotic marine bacteria in the genus. Endozoicomonas. Appl. Microbiol. Biotechnol. 100, 8315–8324 (2016).

    Article 

    Google Scholar 

  • 170.

    Nissimov, J., Rosenberg, E. & Munn, C. B. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol. Lett. 292, 210–215 (2009).

    Article 

    Google Scholar 

  • 171.

    Sharp, K. H., Sneed, J. M., Ritchie, K. B., Mcdaniel, L. & Paul, V. J. Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine roseobacter strain. Biol. Bull. 228, 98–107 (2015).

    Article 

    Google Scholar 

  • 172.

    Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).

    Article 

    Google Scholar 

  • 173.

    Sunagawa, S. et al. Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J. 3, 512–521 (2009).

    Article 

    Google Scholar 

  • 174.

    Ushijima, B., Smith, A., Aeby, G. S. & Callahan, S. M. Vibrio owensii induces the tissue loss disease Montipora white syndrome in the Hawaiian reef coral Montipora capitata. PLoS ONE 7, e46717 (2012).

    Article 

    Google Scholar 

  • 175.

    Mouchka, M. E., Hewson, I. & Harvell, C. D. Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50, 662–674 (2010).

    Article 

    Google Scholar 

  • 176.

    Glasl, B., Herndl, G. J. & Frade, P. R. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 10, 2280–2292 (2016).

    Article 

    Google Scholar 

  • 177.

    Peixoto, R. S. et al. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).

    Article 

    Google Scholar 

  • 178.

    Mueller, E. A., Wisnoski, N. I., Peralta, A. L. & Lennon, J. T. Microbial rescue effects: how microbiomes can save hosts from extinction. Funct. Ecol. 34, 2055–2064 (2020).

    Article 

    Google Scholar 

  • 179.

    Leite, D. C. A. et al. Coral bacterial-core abundance and network complexity as proxies for anthropogenic pollution. Front. Microbiol. 9, 833 (2018).

    Article 

    Google Scholar 

  • 180.

    Fragoso Ados Santos, H. et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci. Rep. 5, 18268 (2015).

    Article 

    Google Scholar 

  • 181.

    Silva, D. P. et al. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. Microbiome 9, 118 (2021).

    Article 

    Google Scholar 

  • 182.

    Welsh, R. M. et al. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ 5, e3315 (2017).

    Article 

    Google Scholar 

  • 183.

    Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).

    Article 

    Google Scholar 

  • 184.

    Assis, J. M. et al. Delivering Beneficial Microorganisms for Corals: rotifers as carriers of probiotic bacteria. Front. Microbiol. 11, 608506 (2020).

    Article 

    Google Scholar 

  • 185.

    Damjanovic, K., Blackall, L. L., Webster, N. S. & van Oppen, M. J. H. The contribution of microbial biotechnology to mitigating coral reef degradation. Microb. Biotechnol. 10, 1236–1243 (2017).

    Article 

    Google Scholar 

  • 186.

    van Oppen, M. J. H. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).

    Article 

    Google Scholar 

  • 187.

    Sweet, M. et al. Insights into the cultured bacterial fraction of corals. mSystems 6, e0124920 (2021).

    Article 

    Google Scholar 

  • 188.

    Brussaard, C. P. D., Baudoux, A.-C. & Rodríguez-Valera, F. in The Marine Microbiome: An Untapped Source of Biodiversity and Biotechnological Potential (eds Stal, L. J. & Cretoiu, M. S.) 155–183 (Springer International, 2016).

  • 189.

    Levin, R. A., Voolstra, C. R., Weynberg, K. D. & van Oppen, M. J. H. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts. ISME J. 11, 808–812 (2017).

    Article 

    Google Scholar 

  • 190.

    Messyasz, A. et al. Coral bleaching phenotypes associated with differential abundances of nucleocytoplasmic large DNA viruses. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.555474 (2020).

    Article 

    Google Scholar 

  • 191.

    Thurber, R. L. V. et al. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa. Proc. Natl Acad. Sci. USA 105, 18413–18418 (2008).

    Article 

    Google Scholar 

  • 192.

    Sweet, M. & Bythell, J. The role of viruses in coral health and disease. J. Invertebr. Pathol. 147, 136–144 (2017).

    Article 

    Google Scholar 

  • 193.

    Thurber, R. V., Payet, J. P., Thurber, A. R. & Correa, A. M. S. Virus–host interactions and their roles in coral reef health and disease. Nat. Rev. Microbiol. 15, 205–216 (2017). This paper reviews the role of viruses in coral holobiont biology.

    Article 

    Google Scholar 

  • 194.

    Frazão, N., Sousa, A., Lässig, M. & Gordo, I. Horizontal gene transfer overrides mutation in Escherichia coli colonizing the mammalian gut. Proc. Natl Acad. Sci. USA 116, 17906–17915 (2019).

    Article 

    Google Scholar 

  • 195.

    Lepage, P. et al. Dysbiosis in inflammatory bowel disease: a role for bacteriophages? Gut 57, 424–425 (2008).

    Article 

    Google Scholar 

  • 196.

    Barr, J. J. et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc. Natl Acad. Sci. USA 110, 10771–10776 (2013).

    Article 

    Google Scholar 

  • 197.

    Silveira, C. B. & Rohwer, F. L. Piggyback-the-winner in host-associated microbial communities. NPJ Biofilms Microbiomes 2, 16010 (2016).

    Article 

    Google Scholar 

  • 198.

    Roach, T. N. F. et al. A multiomic analysis of in situ coral–turf algal interactions. Proc. Natl Acad. Sci. USA 117, 13588–13595 (2020).

    Article 

    Google Scholar 

  • 199.

    Cárdenas, A. et al. Coral-associated viral assemblages from the central Red Sea align with host species and contribute to holobiont genetic diversity. Front. Microbiol. 11, 572534 (2020).

    Article 

    Google Scholar 

  • 200.

    Bondy-Denomy, J. & Davidson, A. R. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J. Microbiol. 52, 235–242 (2014).

    Article 

    Google Scholar 

  • 201.

    Weynberg, K. D., Voolstra, C. R., Neave, M. J., Buerger, P. & van Oppen, M. J. H. From cholera to corals: viruses as drivers of virulence in a major coral bacterial pathogen. Sci. Rep. 5, 17889 (2015).

    Article 

    Google Scholar 

  • 202.

    Silveira, C. B. et al. Genomic and ecological attributes of marine bacteriophages encoding bacterial virulence genes. BMC Genomics 21, 126 (2020).

    Article 

    Google Scholar 

  • 203.

    Soffer, N., Brandt, M. E., Correa, A. M. S., Smith, T. B. & Thurber, R. V. Potential role of viruses in white plague coral disease. ISME J. 8, 271–283 (2014).

    Article 

    Google Scholar 

  • 204.

    Weynberg, K. D. et al. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium. Coral Reefs 36, 773–784 (2017).

    Article 

    Google Scholar 

  • 205.

    Brüwer, J. D., Agrawal, S., Liew, Y. J., Aranda, M. & Voolstra, C. R. Association of coral algal symbionts with a diverse viral community responsive to heat shock. BMC Microbiol. 17, 174 (2017).

    Article 

    Google Scholar 

  • 206.

    Jacquemot, L. et al. Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread coral pathogen. Front. Microbiol. 9, 2501 (2018).

    Article 

    Google Scholar 

  • 207.

    Efrony, R., Loya, Y., Bacharach, E. & Rosenberg, E. Phage therapy of coral disease. Coral Reefs 26, 7–13 (2007).

    Article 

    Google Scholar 

  • 208.

    Cohen, Y., Joseph Pollock, F., Rosenberg, E. & Bourne, D. G. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus. Microbiologyopen 2, 64–74 (2013).

    Article 

    Google Scholar 

  • 209.

    Efrony, R., Atad, I. & Rosenberg, E. Phage therapy of coral white plague disease: properties of phage BA3. Curr. Microbiol. 58, 139–145 (2009).

    Article 

    Google Scholar 

  • 210.

    Atad, I., Zvuloni, A., Loya, Y. & Rosenberg, E. Phage therapy of the white plague-like disease of Favia favus in the Red Sea. Coral Reefs 31, 665–670 (2012).

    Article 

    Google Scholar 

  • 211.

    Sweet, M. J. & Bulling, M. T. On the importance of the microbiome and pathobiome in coral health and disease. Front. Mar. Sci. 4, 9 (2017).

    Article 

    Google Scholar 

  • 212.

    Pollock, F. J., Morris, P. J., Willis, B. L. & Bourne, D. G. The urgent need for robust coral disease diagnostics. PLoS Pathog. 7, e1002183 (2011).

    Article 

    Google Scholar 

  • 213.

    Lesser, M. P., Bythell, J. C., Gates, R. D., Johnstone, R. W. & Hoegh-Guldberg, O. Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J. Exp. Mar. Bio. Ecol. 346, 36–44 (2007).

    Article 

    Google Scholar 

  • 214.

    Roder, C., Arif, C., Daniels, C., Weil, E. & Voolstra, C. R. Bacterial profiling of white plague disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol. Ecol. 23, 965–974 (2014).

    Article 

    Google Scholar 

  • 215.

    Soffer, N., Zaneveld, J. & Vega Thurber, R. Phage–bacteria network analysis and its implication for the understanding of coral disease. Environ. Microbiol. 17, 1203–1218 (2015).

    Article 

    Google Scholar 

  • 216.

    Ubeda, C. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56, 836–844 (2005).

    Article 

    Google Scholar 

  • 217.

    Cárdenas, A. et al. Excess labile carbon promotes the expression of virulence factors in coral reef bacterioplankton. ISME J. 12, 59–76 (2018).

    Article 

    Google Scholar 

  • 218.

    Anthony, K. et al. New interventions are needed to save coral reefs. Nat. Ecol. Evol. 1, 1420–1422 (2017).

    Article 

    Google Scholar 

  • 219.

    Allard, S. M. et al. Introducing the mangrove microbiome initiative: identifying microbial research priorities and approaches to better understand, protect, and rehabilitate mangrove ecosystems. mSystems https://doi.org/10.1128/mSystems.00658-20 (2020).

    Article 

    Google Scholar 

  • 220.

    Zickfeld, K. et al. Long-term climate change commitment and reversibility: An EMIC intercomparison. J. Clim. 26, 5782–5809 (2013).

    Article 

    Google Scholar 

  • 221.

    Humanes, A. et al. A framework for selectively breeding corals for assisted evolution. Preprint at bioRxiv https://doi.org/10.1101/2021.02.23.432469 (2021).

    Article 

    Google Scholar 

  • 222.

    National Academies of Sciences, Engineering, and Medicine. A Decision Framework for Interventions to Increase the Persistence and Resilience of Coral Reefs (National Academies Press, 2019).

  • 223.

    Page, C. A., Muller, E. M. & Vaughan, D. E. Microfragmenting for the successful restoration of slow growing massive corals. Ecol. Eng. 123, 86–94 (2018).

    Article 

    Google Scholar 

  • 224.

    Schopmeyer, S. A. et al. Regional restoration benchmarks for Acropora cervicornis. Coral Reefs 36, 1047–1057 (2017).

    Article 

    Google Scholar 

  • 225.

    Suggett, D. J., Edmondson, J., Howlett, L. & Camp, E. F. Coralclip®: a low-cost solution for rapid and targeted out-planting of coral at scale. Restor. Ecol. 28, 289–296 (2020).

    Article 

    Google Scholar 

  • 226.

    Woesik, R. et al. Differential survival of nursery-reared Acropora cervicornis outplants along the Florida reef tract. Restor. Ecol. 29, e13302 (2021).

    Article 

    Google Scholar 

  • 227.

    Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida Keys National Marine Sanctuary. PLoS ONE 15, e0231817 (2020).

    Article 

    Google Scholar 

  • 228.

    Ladd, M. C., Shantz, A. A., Bartels, E. & Burkepile, D. E. Thermal stress reveals a genotype-specific tradeoff between growth and tissue loss in restored Acropora cervicornis. Mar. Ecol. Prog. Ser. 572, 129–139 (2017).

    Article 

    Google Scholar 

  • 229.

    Goergen, E. A. & Gilliam, D. S. Outplanting technique, host genotype, and site affect the initial success of outplanted Acropora cervicornis. PeerJ 6, e4433 (2018).

    Article 

    Google Scholar 

  • 230.

    Chamberland, V. F. et al. New seeding approach reduces costs and time to outplant sexually propagated corals for reef restoration. Sci. Rep. 7, 18076 (2017).

    Article 

    Google Scholar 

  • 231.

    Craggs, J., Guest, J., Davis, M. & Sweet, M. Completing the life cycle of a broadcast spawning coral in a closed mesocosm. Invertebr. Reprod. Dev. 64, 244–247 (2020).

    Article 

    Google Scholar 

  • 232.

    Hock, K. et al. Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol. 15, e2003355 (2017).

    Article 

    Google Scholar 

  • 233.

    Quigley, K. M., Bay, L. K. & van Oppen, M. J. H. The active spread of adaptive variation for reef resilience. Ecol. Evol. 9, 11122–11135 (2019).

    Article 

    Google Scholar 

  • 234.

    Sangsawang, L. et al. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R. Soc. Open Sci. 4, 171201 (2017).

    Article 

    Google Scholar 

  • 235.

    Pernice, M. et al. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 14, 325–334 (2020).

    Article 

    Google Scholar 

  • 236.

    Kwong, W. K., Del Campo, J., Mathur, V., Vermeij, M. J. A. & Keeling, P. J. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568, 103–107 (2019).

    Article 

    Google Scholar 

  • 237.

    Fine, M., Gildor, H. & Genin, A. A coral reef refuge in the Red Sea. Glob. Chang. Biol. 19, 3640–3647 (2013).

    Article 

    Google Scholar 

  • 238.

    Osman, E. O. et al. Thermal refugia against coral bleaching throughout the northern Red Sea. Glob. Chang. Biol. 24, e474–e484 (2018).

    Article 

    Google Scholar 

  • 239.

    Camp, E. F. et al. Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment. Coral Reefs 39, 701–716 (2020).

    Article 

    Google Scholar 

  • 240.

    Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).

    Article 

    Google Scholar 

  • 241.

    Putnam, H. M., Barott, K. L., Ainsworth, T. D. & Gates, R. D. The vulnerability and resilience of reef-building corals. Curr. Biol. 27, R528–R540 (2017).

    Article 

    Google Scholar 

  • 242.

    Hagedorn, M. & Spindler, R. The reality, use and potential for cryopreservation of coral reefs. Adv. Exp. Med. Biol. 753, 317–329 (2014).

    Article 

    Google Scholar 

  • 243.

    Hagedorn, M. et al. Successful demonstration of assisted gene flow in the threatened coral Acropora palmata across genetically-isolated caribbean populations using cryopreserved sperm. Cold Spring Harb. Lab. https://doi.org/10.1101/492447 (2018).

    Article 

    Google Scholar 

  • 244.

    Hagedorn, M., Spindler, R. & Daly, J. Cryopreservation as a tool for reef restoration: 2019. Adv. Exp. Med. Biol. 1200, 489–505 (2019).

    Article 

    Google Scholar 

  • 245.

    Daly, J. et al. Successful cryopreservation of coral larvae using vitrification and laser warming. Sci. Rep. 8, 15714 (2018).

    Article 

    Google Scholar 

  • 246.

    Chakravarti, L. J., Beltran, V. H. & van Oppen, M. J. H. Rapid thermal adaptation in photosymbionts of reef-building corals. Glob. Chang. Biol. 23, 4675–4688 (2017).

    Article 

    Google Scholar 

  • 247.

    Quigley, K. M., Alvarez Roa, C., Torda, G., Bourne, D. G. & Willis, B. L. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. Microbiologyopen 9, e959 (2020).

    Article 

    Google Scholar 

  • 248.

    Teplitski, M. & Ritchie, K. How feasible is the biological control of coral diseases? Trends Ecol. Evol. 24, 378–385 (2009).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    The influence of different morphological units on the turbulent flow characteristics in step-pool mountain streams

    Shared patterns in body size declines among crinoids during the Palaeozoic extinction events