Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 259, 698–709. https://doi.org/10.1016/j.foreco.2009.09.023 (2010).
Google Scholar
Gamfeldt, L. et al. Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4, 8. https://doi.org/10.1038/ncomms2328 (2013).
Google Scholar
Van Meerbeek, K., Jucker, T. & Svenning, J.-C. Unifying the concepts of stability and resilience in ecology. J. Ecol. 109, 3114–3132. https://doi.org/10.1111/1365-2745.13651 (2021).
Google Scholar
FAO and UNEP. The State of the World’s Forests (SOFO). (FAO and UNEP, 2020).
Forest Europe. State of Europe’s Forests 2015. Ministerial Conference on the Protection of Forests in Europe. www.foresteurope.org. (Forest Europe, 2015).
Matthews, J. D. Silvicultural Systems (Oxford University Press, 1991).
Chaudhary, A., Burivalova, Z., Koh, L. P. & Hellweg, S. Impact of forest management on species richness: Global meta-analysis and economic trade-offs. Sci. Rep. 6, 10. https://doi.org/10.1038/srep23954 (2016).
Google Scholar
Gustafsson, L., Kouki, J. & Sverdrup-Thygeson, A. Tree retention as a conservation measure in clear-cut forests of northern Europe: A review of ecological consequences. Scand. J. For. Res. 25, 295–308. https://doi.org/10.1080/02827581.2010.497495 (2010).
Google Scholar
Raymond, P., Bédard, S., Roy, V., Larouche, C. & Tremblay, S. The irregular shelterwood system: Review, classification, and potential application to forests affected by partial disturbances. J. For. 107, 405–413 (2009).
Csépányi, P. & Csór, A. Economic assessment of European beech and Turkey oak stands with close-to-nature forest management. Acta Silvat. Lignar. Hung. 13, 9–24 (2017).
Google Scholar
Ebeling, A. et al. Plant Diversity Impacts Decomposition and Herbivory via Changes in Aboveground Arthropods. PLoS ONE 9, 8. https://doi.org/10.1371/journal.pone.0106529 (2014).
Google Scholar
Chen, B. R. & Wise, D. H. Bottom-up limitation of predaceous arthropods in a detritus-based terrestrial food web. Ecology 80, 761–772. https://doi.org/10.1890/0012-9658(1999)080[0761:Bulopa]2.0.Co;2 (1999).
Google Scholar
Zuev, A. et al. Different groups of ground-dwelling spiders share similar trophic niches in temperate forests. Ecol. Entomol. 45, 1346–1356. https://doi.org/10.1111/een.12918 (2020).
Google Scholar
Moulder, B. C. & Reichle, D. E. Significance of Spider Predation in the Energy Dynamics of Forest-Floor Arthropod Communities. Ecol. Monogr. 42, 473–498. https://doi.org/10.2307/1942168 (1972).
Google Scholar
Lawrence, K. L. & Wise, D. H. Unexpected indirect effect of spiders on the rate of litter disappearance in a deciduous forest. Pedobiologia 48, 149–157. https://doi.org/10.1016/j.pedobi.2003.11.001 (2004).
Google Scholar
Oxbrough, A. & Ziesche, T. Spiders in Forest Ecoystems. In Integrative approaches as an opportunity for the conservation of forest biodiversity (eds Kraus, D. & Krumm, F.) 186–193 (European Forest Institute, 2013).
Clarke, R. D. & Grant, P. R. An experimental study of the role of spiders as predators in a forest litter community. Part 1. Ecology 49, 1152–1154. https://doi.org/10.2307/1934499 (1968).
Google Scholar
Wermelinger, B. et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. For. Ecol. Manag. 391, 9–18. https://doi.org/10.1016/j.foreco.2017.01.033 (2017).
Google Scholar
Gallé, R., Szabó, A., Császár, P. & Torma, A. Spider assemblage structure and functional diversity patterns of natural forest steppes and exotic forest plantations. For. Ecol. Manag. 411, 234–239. https://doi.org/10.1016/j.foreco.2018.01.040 (2018).
Google Scholar
Buddle, C. M., Langor, D. W., Pohl, G. R. & Spence, J. R. Arthropod responses to harvesting and wildfire: Implications for emulation of natural disturbance in forest management. Biol. Cons. 128, 346–357. https://doi.org/10.1016/j.biocon.2005.10.002 (2006).
Google Scholar
Oxbrough, A. G., Gittings, T., O’Halloran, J., Giller, P. S. & Smith, G. F. Structural indicators of spider communities across the forest plantation cycle. For. Ecol. Manag. 212, 171–183. https://doi.org/10.1016/j.foreco.2005.03.040 (2005).
Google Scholar
Ingle, K. et al. Winter-active spider fauna is affected by plantation forest type. Env. Entomol. 49, 601–606. https://doi.org/10.1093/ee/nvaa025 (2020).
Google Scholar
Munevar, A., Rubio, G. D. & Zurita, G. A. Changes in spider diversity through the growth cycle of pine plantations in the semi-deciduous Atlantic forest: The role of prey availability and abiotic conditions. For. Ecol. Manag. 424, 536–544. https://doi.org/10.1016/j.foreco.2018.03.025 (2018).
Google Scholar
Matveinen-Huju, K. & Koivula, M. Effects of alternative harvesting methods on boreal forest spider assemblages. Can. J. For. Res. 38, 782–794. https://doi.org/10.1139/x07-169 (2008).
Google Scholar
Buddle, C. M. & Shorthouse, D. P. Effects of experimental harvesting on spider (Araneae) assemblages in boreal deciduous forests. Can. Entomol. 140, 437–452 (2008).
Google Scholar
Kovács, B., Tinya, F., Németh, C. & Ódor, P. Unfolding the effects of different forestry treatments on microclimate in oak forests: results of a 4-yr experiment. Ecol. Appl. 30, e02043. https://doi.org/10.1002/eap.2043 (2020).
Google Scholar
Kovács, B. et al. The Short-Term Effects of Experimental Forestry Treatments on Site Conditions in an Oak-Hornbeam Forest. Forests 9, 406 (2018).
Google Scholar
Pommerening, A. & Murphy, S. T. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77, 27–44. https://doi.org/10.1093/forestry/77.1.27 (2004).
Google Scholar
Tinya, F. et al. Initial understory response to experimental silvicultural treatments in a temperate oak-dominated forest. Eur. J. For. Res. 138, 65–77. https://doi.org/10.1007/s10342-018-1154-8 (2018).
Google Scholar
Tinya, F. et al. Initial regeneration success of tree species after different forestry treatments in a sessile oak-hornbeam forest. For. Ecol. Manag. 459, 117810. https://doi.org/10.1016/j.foreco.2019.117810 (2020).
Google Scholar
Boros, G., Kovács, B. & Ódor, P. Green tree retention enhances negative short-term effects of clear-cutting on enchytraeid assemblages in a temperate forest. Appl. Soil Ecol. 136, 106–115. https://doi.org/10.1016/j.apsoil.2018.12.018 (2019).
Google Scholar
Elek, Z. et al. Taxon-specific responses to different forestry treatments in a temperate forest. Sci. Rep. 8, 16990. https://doi.org/10.1038/s41598-018-35159-z (2018).
Google Scholar
Connell, J. H. Intermediate-disturbance hypothesis. Science 204, 1345–1345 (1979).
Google Scholar
Chen, K. C. & Tso, I. M. Spider diversity on Orchid Island, Taiwan: A comparison between habitats receiving different degrees of human disturbance. Zool. Stud. 43, 598–611 (2004).
Szinetar, C. & Samu, F. Intensive grazing opens spider assemblage to invasion by disturbance-tolerant species. J. Arachnol. 40, 59–70 (2012).
Google Scholar
Pinzon, J., Spence, J. R. & Langor, D. W. Responses of ground-dwelling spiders (Araneae) to variable retention harvesting practices in the boreal forest. For. Ecol. Manag. 266, 42–53. https://doi.org/10.1016/j.foreco.2011.10.045 (2012).
Google Scholar
Pinzon, J., Spence, J. R. & Langor, D. W. Effects of prescribed burning and harvesting on ground-dwelling spiders in the Canadian boreal mixedwood forest. Biodivers. Conserv. 22, 1513–1536. https://doi.org/10.1007/s10531-013-0489-1 (2013).
Google Scholar
Samu, F. et al. Differential ecological responses of two generalist arthropod groups, spiders and carabid beetles (Araneae, Carabidae), to the effects of wildfire. Commun. Ecol. 11, 129–139. https://doi.org/10.1556/ComEc.11.2010.2.1 (2010).
Google Scholar
Morel, L. et al. Spontaneous recovery of functional diversity and rarity of ground-living spiders shed light on the conservation importance of recent woodlands. Biodivers. Conserv. 28, 687–709. https://doi.org/10.1007/s10531-018-01687-3 (2019).
Google Scholar
Seedre, M., Felton, A. & Lindbladh, M. What is the impact of continuous cover forestry compared to clearcut forestry on stand-level biodiversity in boreal and temperate forests? A systematic review protocol. Env. Evid. 7, 28. https://doi.org/10.1186/s13750-018-0138-y (2018).
Google Scholar
Garcia-Tejero, S., Spence, J. R., O’Halloran, J., Bourassa, S. & Oxbrough, A. Natural succession and clearcutting as drivers of environmental heterogeneity and beta diversity in North American boreal forests. PLoS ONE 13, 16. https://doi.org/10.1371/journal.pone.0206931 (2018).
Google Scholar
Andrési, D., Bali, L., Tuba, K. & Szinetár, C. Comparative study of ground beetle and ground-dwelling spider assemblages of artificial gap openings. Commun. Ecol. 19, 133–140. https://doi.org/10.1556/168.2018.19.2.5 (2018).
Google Scholar
Arganaraz, C. I. et al. Ground-dwelling spiders and understory vascular plants on Fuegian austral forests: Community responses to variable retention management and their association to natural ecosystems. For. Ecol. Manag. 474, 12. https://doi.org/10.1016/j.foreco.2020.118375 (2020).
Google Scholar
Dorow, W. H. O., Blick, T., Pauls, S. U. & Schneider, A. Waldbindung ausgewählter Tiergruppen Deutschlands (BfN-Skripten 544, 2019).
Szmatona-Túri, T., Magos, G., Vona-Túri, D., Gál, B. & Weiperth, A. Review of habitats occupied by Urocoras longispinus: A little-known spider species, and responses to grassland management. Biologia 73, 523–529. https://doi.org/10.2478/s11756-018-0061-2 (2018).
Google Scholar
Haraguchi, T. F., Uchida, M., Shibata, Y. & Tayasu, I. Contributions of detrital subsidies to aboveground spiders during secondary succession, revealed by radiocarbon and stable isotope signatures. Oecologia 171, 935–944. https://doi.org/10.1007/s00442-012-2446-1 (2013).
Google Scholar
Carvalho, J. C. et al. Taxonomic divergence and functional convergence in Iberian spider forest communities: Insights from beta diversity partitioning. J. Biogeogr. 47, 288–300. https://doi.org/10.1111/jbi.13722 (2020).
Google Scholar
Samu, F., Horváth, A., Neidert, D., Botos, E. & Szita, É. Metacommunities of spiders in grassland habitat fragments of an agricultural landscape. Basic Appl. Ecol. 31, 92–103. https://doi.org/10.1016/j.baae.2018.07.009 (2018).
Google Scholar
Frost, C. M., Didham, R. K., Rand, T. A., Peralta, G. & Tylianakis, J. M. Community-level net spillover of natural enemies from managed to natural forest. Ecology 96, 193–202. https://doi.org/10.1890/14-0696.1 (2015).
Google Scholar
Stewart-Oaten, A., Murdoch, W. W. & Parker, K. R. Environmental impact assessment: “pseudoreplication” in time?. Ecology 67, 929–940. https://doi.org/10.2307/1939815 (1986).
Google Scholar
Lemmon, P. E. A new instrument for measuring forest overstory density. J. For. 55, 667–668 (1957).
Jimenez-Valverde, A. & Lobo, J. M. Establishing reliable spider (Araneae, Araneidae and Thomisidae) assemblage sampling protocols: estimation of species richness, seasonal coverage and contribution of juvenile data to species richness and composition. Acta Oecol. 30, 21–32 (2006).
Google Scholar
SAS Institute. JMP Statistics and Graphics Guide, Release 6. (SAS Institute Inc., 2005).
Smilauer, P. & Leps, J. Multivariate Analysis of Ecological Data Using CANOCO 5 2nd edn. (Cambridge University Press, 2014).
Google Scholar
ter Braak, C. J. F. & Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination (version 5.0) (Microcomputer Power, 2012).
McCune, B. & Mefford, M. PC-ORD. Multivariate Analysis ofEcological Data. Version 6. (MjM software design, 2011).
Van den Brink, P. J. & Braak, C. J. F. T. Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18, 138–148. https://doi.org/10.1002/etc.5620180207 (1999).
Google Scholar
Weiher, E. & Boylen, C. W. Patterns and prediction of α and β diversity of aquatic plants in Adirondack (New York) lakes. Can. J. Bot. 72, 1797–1804. https://doi.org/10.1139/b94-221 (1994).
Google Scholar
Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382. https://doi.org/10.1046/j.1365-2656.2003.00710.x (2003).
Google Scholar
Podani, J. & Schmera, D. A new conceptual and methodological framework for exploring and explaining pattern in presence—absence data. Oikos 120, 1625–1638. https://doi.org/10.1111/j.1600-0706.2011.19451.x (2011).
Google Scholar
Source: Ecology - nature.com