Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809. https://doi.org/10.1371/journal.pone.0185809 (2017).
Google Scholar
Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. https://doi.org/10.1016/j.biocon.2020.108426 (2020).
Google Scholar
van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420. https://doi.org/10.1126/science.aax9931 (2020).
Google Scholar
Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253. https://doi.org/10.1038/387253a0 (1997).
Google Scholar
Hill, D. S. The Economic Importance of Insects (Springer, 2012). https://doi.org/10.1007/978-94-011-5348-5.
Google Scholar
Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821. https://doi.org/10.1016/j.ecolecon.2008.06.014 (2009).
Google Scholar
Neumann, P. et al. Ecosystem services, agriculture and neonicotinoids. EASAC Policy Rep. 26, 1–53 (2015).
Google Scholar
Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: a review of its drivers. Biol. Cons. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).
Google Scholar
Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).
Google Scholar
Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480. https://doi.org/10.1146/annurev-ento-011019-025151 (2019).
Google Scholar
Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007 (2010).
Google Scholar
Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957. https://doi.org/10.1126/science.1255957 (2015).
Google Scholar
Chagnon, M. et al. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ. Sci. Pollut. Res. 22, 119–134. https://doi.org/10.1007/s11356-014-3277-x (2015).
Google Scholar
Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22, 68–102. https://doi.org/10.1007/s11356-014-3471-x (2015).
Google Scholar
Stanley, J. & Preetha, G. Pesticide Toxicity to Non-target Organisms (Springer, 2016). https://doi.org/10.1007/978-94-017-7752-0.
Google Scholar
Wood, T. J. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ. Sci. Pollut. Res. 24, 17285–17325. https://doi.org/10.1007/s11356-017-9240-x (2017).
Google Scholar
Humann-Guilleminot, S. et al. A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for agri-environment schemes. J. Appl. Ecol. 56, 1502–1514. https://doi.org/10.1111/1365-2664.13392 (2019).
Google Scholar
Goulson, D. Review: an overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987. https://doi.org/10.1111/1365-2664.12111 (2013).
Google Scholar
Hilton, M. J., Jarvis, T. D. & Ricketts, D. C. The degradation rate of thiamethoxam in European field studies. Pest Manag. Sci. 72, 388–397. https://doi.org/10.1002/ps.4024 (2016).
Google Scholar
Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).
Google Scholar
Li, Y. et al. Adsorption-desorption and degradation of insecticides clothianidin and thiamethoxam in agricultural soils. Chemosphere 207, 708–714. https://doi.org/10.1016/j.chemosphere.2018.05.139 (2018).
Google Scholar
Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V. L. & Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Physiol. 76, 55–69. https://doi.org/10.1016/S0048-3575(03)00065-8 (2003).
Google Scholar
Straub, L. et al. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc. R. Soc. B 283, 20160506. https://doi.org/10.1098/rspb.2016.0506 (2016).
Google Scholar
Blacquiere, T., Smagghe, G., Van Gestel, C. A. & Mommaerts, V. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21, 973–992. https://doi.org/10.1007/s10646-012-0890-7 (2012).
Google Scholar
Straub, L., Strobl, V. & Neumann, P. The need for an evolutionary approach to ecotoxicology. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1194-6 (2020).
Google Scholar
Wilson, E. O. The Insect Societies (Harvard University Press, 1971).
Schläppi, D., Kettler, N., Straub, L., Glauser, G. & Neumann, P. Long-term effects of neonicotinoid insecticides on ants. Commun. Biol. 3, 335. https://doi.org/10.1038/s42003-020-1066-2 (2020).
Google Scholar
Schläppi, D., Stroeymeyt, N. & Neumann, P. Unintentional effects of neonicotinoids on ants (Hymenoptera: Formicidae). Myrmecological News, in press.
Straub, L., Williams, G. R., Pettis, J., Fries, I. & Neumann, P. Superorganism resilience: eusociality and susceptibility of ecosystem service providing insects to stressors. Curr. Opin. Insect Sci. 12, 109–112. https://doi.org/10.1016/j.cois.2015.10.010 (2015).
Google Scholar
Cremer, S. Social immunity in insects. Curr. Biol. 29, R458–R463. https://doi.org/10.1016/j.cub.2019.03.035 (2019).
Google Scholar
Straub, L. et al. From antagonism to synergism: extreme differences in stressor interactions in one species. Sci. Rep. 10, 1–8. https://doi.org/10.1038/s41598-020-61371-x (2020).
Google Scholar
Crall, J. D. et al. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362, 683–686. https://doi.org/10.1126/science.aat1598 (2018).
Google Scholar
Hölldobler, B. & Wilson, E. O. The Ants (Springer, 1990). https://doi.org/10.1046/j.1420-9101.1992.5010169.x.
Google Scholar
Del Toro, I., Ribbons, R. R. & Pelini, S. L. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. News 17, 133–146 (2012).
Keller, L. & Genoud, M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389, 958. https://doi.org/10.1038/40130 (1997).
Google Scholar
Bird, G., Wilson, A. E., Williams, G. R. & Hardy, N. B. Parasites and pesticides act antagonistically on honey bee health. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13811 (2020).
Google Scholar
Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392. https://doi.org/10.1038/s41586-021-03787-7 (2021).
Google Scholar
Ranjeva, S. et al. Age-specific differences in the dynamics of protective immunity to influenza. Nat. Commun. 10, 1–11. https://doi.org/10.1038/s41467-019-09652-6 (2019).
Google Scholar
Dahlgren, L., Johnson, R. M., Siegfried, B. D. & Ellis, M. D. Comparative toxicity of acaricides to honey bee (Hymenoptera: Apidae) workers and queens. J. Econ. Entomol. 105, 1895–1902. https://doi.org/10.1603/EC12175 (2012).
Google Scholar
O’Neal, T. S., Anderson, T. D. & Wu-Smart, J. Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26, 57–62. https://doi.org/10.1016/j.cois.2018.01.006 (2018).
Google Scholar
Feldhaar, H. & Otti, O. Pollutants and their interaction with diseases of social hymenoptera. Insects 11, 153. https://doi.org/10.3390/insects11030153 (2020).
Google Scholar
Doublet, V., Labarussias, M., de Miranda, J. R., Moritz, R. F. & Paxton, R. J. Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ. Microbiol. 17, 969–983. https://doi.org/10.1111/1462-2920.12426 (2015).
Google Scholar
Sánchez-Bayo, F. et al. Are bee diseases linked to pesticides?—a brief review. Environ. Int. 89, 7–11. https://doi.org/10.1016/j.envint.2016.01.009 (2016).
Google Scholar
Annoscia, D. et al. Neonicotinoid Clothianidin reduces honey bee immune response and contributes to Varroa mite proliferation. Nat. Commun. 11, 1–7. https://doi.org/10.1038/s41467-020-19715-8 (2020).
Google Scholar
Di Prisco, G. et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl. Acad. Sci. 110, 18466–18471. https://doi.org/10.1073/pnas.1314923110 (2013).
Google Scholar
Coulon, M. et al. Influence of chronic exposure to thiamethoxam and chronic bee paralysis virus on winter honey bees. PLoS ONE 14, e0220703. https://doi.org/10.1371/journal.pone.0220703 (2019).
Google Scholar
Brandt, A. et al. Immunosuppression in honeybee queens by the neonicotinoids thiacloprid and clothianidin. Sci. Rep. 7, 4673. https://doi.org/10.1038/s41598-017-04734-1 (2017).
Google Scholar
Beaurepaire, A. et al. Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects 11, 239. https://doi.org/10.3390/insects11040239 (2020).
Google Scholar
Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306. https://doi.org/10.1126/science.1220941 (2012).
Google Scholar
Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597. https://doi.org/10.1126/science.aac9976 (2016).
Google Scholar
Neumann, P., Yañez, O., Fries, I. & De Miranda, J. R. Varroa invasion and virus adaptation. Trends Parasitol. 28, 353–354. https://doi.org/10.1016/j.pt.2012.06.004 (2012).
Google Scholar
Woolhouse, M. E., Haydon, D. T. & Antia, R. Emerging pathogens: the epidemiology and evolution of species jumps. Trends Ecol. Evol. 20, 238–244. https://doi.org/10.1016/j.tree.2005.02.009 (2005).
Google Scholar
McMahon, D. P. et al. A sting in the spit: widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624. https://doi.org/10.1111/1365-2656.12345 (2015).
Google Scholar
Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240. https://doi.org/10.1016/j.virusres.2013.06.013 (2013).
Google Scholar
Tehel, A., Brown, M. J. & Paxton, R. J. Impact of managed honey bee viruses on wild bees. Curr. Opin. Virol. 19, 16–22. https://doi.org/10.1016/j.coviro.2016.06.006 (2016).
Google Scholar
Martin, S. J. & Brettell, L. E. Deformed wing virus in honeybees and other insects. Ann. Rev. Virol. https://doi.org/10.1146/annurev-virology-092818-015700 (2019).
Google Scholar
Schläppi, D., Lattrell, P., Yañez, O., Chejanovsky, N. & Neumann, P. Foodborne transmission of deformed wing virus to ants (Myrmica rubra). Insects 10, 394. https://doi.org/10.3390/insects10110394 (2019).
Google Scholar
Schläppi, D., Chejanovsky, N., Yañez, O. & Neumann, P. Foodborne Transmission and clinical symptoms of honey bee viruses in ants Lasius spp. Viruses 12, 321. https://doi.org/10.3390/v12030321 (2020).
Google Scholar
Seifert, B. Die Ameisen Mittel- und Nordeuropas (Lutra Verlags und Vertriebsgesellschaft, 2007).
Payne, A. N., Shepherd, T. F. & Rangel, J. The detection of honey bee (Apis mellifera)-associated viruses in ants. Sci. Rep. 10, 2923. https://doi.org/10.1038/s41598-020-59712-x (2020).
Google Scholar
Kutter, H. & Stumper R. Hermann Appel, ein leidgeadelter Entomologe (1892–1966). in Proceedings of the VI Congress of the International Union for the Study of Social Insects (eds Ernst, E., Frauchiger, L., Hauschteck-Jungen, E., Jungen, H., Leuthold, R., Maurizio, A., Ruppli, E. & Tschumi, P.), 275–279 (Organizing Committee of the VI Congress IUSSI, Bern, 1969).
Jeschke, P., Nauen, R., Schindler, M. & Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 59, 2897–2908. https://doi.org/10.1021/jf101303g (2011).
Google Scholar
Limay-Rios, V. et al. Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario. Environ. Toxicol. Chem. 35, 303–310. https://doi.org/10.1002/etc.3257 (2016).
Google Scholar
Schaafsma, A., Limay-Rios, V., Xue, Y., Smith, J. & Baute, T. Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario. Environ. Toxicol. Chem. 35, 295–302. https://doi.org/10.1002/etc.3231 (2016).
Google Scholar
De Miranda, J. R., Cordoni, G. & Budge, G. The acute bee paralysis virus–Kashmir bee virus–Israeli acute paralysis virus complex. J. Invertebr. Pathol. 103, 30–47. https://doi.org/10.1016/j.jip.2009.06.014 (2010).
Google Scholar
Decourtye, A. & Devillers, J. Ecotoxicity of neonicotinoid insecticides to bees. In Insect Nicotinic Acetylcholine Receptors (ed. Thany, S. H.) 85–95 (Springer, 2010).
Google Scholar
Diez, L., Lejeune, P. & Detrain, C. Keep the nest clean: survival advantages of corpse removal in ants. Biol. Let. 10, 20140306. https://doi.org/10.1098/rsbl.2014.0306 (2014).
Google Scholar
Wang, L., Zeng, L. & Chen, J. Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). Sci. Rep. 5, 17938. https://doi.org/10.1038/srep17938 (2015).
Google Scholar
Moya-Laraño, J., Macías-Ordóñez, R., Blanckenhorn, W. U. & Fernández-Montraveta, C. Analysing body condition: mass, volume or density?. J. Anim. Ecol. 77, 1099–1108. https://doi.org/10.1111/j.1365-2656.2008.01433.x (2008).
Google Scholar
Knapp, M., Knappová, J. & Miller, T. Measurement of body condition in a common carabid beetle, Poecilus cupreus: a comparison of fresh weight, dry weight, and fat content. J. Insect Sci. https://doi.org/10.1673/031.013.0601 (2013).
Google Scholar
Retschnig, G. et al. Sex-specific differences in pathogen susceptibility in honey bees (Apis mellifera). PLoS ONE 9, e85261. https://doi.org/10.1371/journal.pone.0085261 (2014).
Google Scholar
Suchail, S., Guez, D. & Belzunces, L. P. Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ. Toxicol. Chem. Int. J. 20, 2482–2486. https://doi.org/10.1002/etc.5620201113 (2001).
Google Scholar
Helms, K. R. & Vinson, S. B. Plant resources and colony growth in an invasive ant: the importance of honeydew-producing hemiptera in carbohydrate transfer across trophic levels. Environ. Entomol. 37, 487–493. https://doi.org/10.1093/ee/37.2.487 (2008).
Google Scholar
Dornhaus, A. & Franks, N. R. Colony size affects collective decision-making in the ant Temnothorax albipennis. Insectes Soc. 53, 420–427. https://doi.org/10.1007/s00040-006-0887-4 (2006).
Google Scholar
Ruel, C., Cerda, X. & Boulay, R. Behaviour-mediated group size effect constrains reproductive decisions in a social insect. Anim. Behav. 84, 853–860. https://doi.org/10.1016/j.anbehav.2012.07.006 (2012).
Google Scholar
Sommer, K. & Hölldobler, B. Colony founding by queen association and determinants of reduction in queen number in the ant Lasius niger. Anim. Behav. 50, 287–294. https://doi.org/10.1006/anbe.1995.0244 (1995).
Google Scholar
Boomsma, J., Van der Lee, G. & Van der Have, T. On the production ecology of Lasius niger (Hymenoptera: Formicidae) in successive coastal dune valleys. J. Anim. Ecol. https://doi.org/10.2307/4017 (1982).
Google Scholar
Zioni, N., Soroker, V. & Chejanovsky, N. Replication of varroa destructor virus 1 (VDV-1) and a varroa destructor virus 1–deformed wing virus recombinant (VDV-1–DWV) in the head of the honey bee. Virology 417, 106–112. https://doi.org/10.1016/j.virol.2011.05.009 (2011).
Google Scholar
Wood, T. et al. Managed honey bees as a radar for wild bee decline?. Apidologie 51, 1100–1116. https://doi.org/10.1007/s13592-020-00788-9 (2020).
Google Scholar
Stroeymeyt, N. et al. Social network plasticity decreases disease transmission in a eusocial insect. Science 362, 941–945. https://doi.org/10.1126/science.aat4793 (2018).
Google Scholar
Folt, C., Chen, C., Moore, M. & Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877. https://doi.org/10.4319/lo.1999.44.3_part_2.0864 (1999).
Google Scholar
Gennings, C. et al. A unifying concept for assessing toxicological interactions: changes in slope. Toxicol. Sci. 88, 287–297. https://doi.org/10.1093/toxsci/kfi275 (2005).
Google Scholar
Jonker, M. J., Svendsen, C., Bedaux, J. J., Bongers, M. & Kammenga, J. E. Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose-response analysis. Environ. Toxicol. Chem. Int. J. 24, 2701–2713. https://doi.org/10.1897/04-431R.1 (2005).
Google Scholar
Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inadequate environmental risk assessment of pesticides. Front. Environ. Sci. 7, 177. https://doi.org/10.3389/fenvs.2019.00177 (2019).
Google Scholar
Ortega-Calvo, J.-J. et al. From bioavailability science to regulation of organic chemicals. Environ. Sci. Technol. 49, 10255–10264. https://doi.org/10.1021/acs.est.5b02412 (2015).
Google Scholar
Dauber, J. & Wolters, V. Edge effects on ant community structure and species richness in an agricultural landscape. Biodivers. Conserv. 13, 901–915. https://doi.org/10.1023/B:BIOC.0000014460.65462.2b (2004).
Google Scholar
EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues). Scientific Opinion addressing the state of the science on risk assessment of plant protection products for non‐target arthropods. EFSA Journal 13, 3996 (2015). https://doi.org/10.2903/j.efsa.2015.3996
EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues). Scientific Opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA Journal 15, 4690. https://doi.org/10.2903/j.efsa.2017.4690 (2017).
Organization for Economic Cooperation and Development (OECD). OECD Guidelines for the Testing of Chemicals, section 2—Effects on Biotic Systems. (OECD Publishing, 2019).
Storck, V., Karpouzas, D. G. & Martin-Laurent, F. Towards a better pesticide policy for the European Union. Sci. Total Environ. 575, 1027–1033. https://doi.org/10.1016/j.scitotenv.2016.09.167 (2017).
Google Scholar
De Miranda, J. R. et al. Standard methods for virus research in Apis mellifera. J. Apic. Res. 52, 1–56. https://doi.org/10.3896/IBRA.1.52.4.22 (2013).
Google Scholar
Evans, J. D. et al. Standard methods for molecular research in Apis mellifera. J. Apic. Res. 52, 1–54. https://doi.org/10.3896/IBRA.1.52.4.11 (2013).
Google Scholar
Lowenthal, M. S., Quittman, E. & Phinney, K. W. Absolute quantification of RNA or DNA using acid hydrolysis and mass spectrometry. Anal. Chem. 91, 14569–14576. https://doi.org/10.1021/acs.analchem.9b03625 (2019).
Google Scholar
Locke, B., Forsgren, E., Fries, I. & De Miranda, J. R. Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control. Appl. Environ. Microbiol. 78, 227–235. https://doi.org/10.1128/AEM.06094-11 (2012).
Google Scholar
R Development Core Team. R: A language and environment for statistical computing. R Version 3.6.3. R Foundation for Statistical Computing (Vienna, 2020). http://cran.r-project.org.
Therneau, T. A Package for Survival Analysis in S. version 2.38 (2015). http://cran.rproject.org/package=survival
Kutner, M. H., Nachtsheim, C. J., Neter, J. & Li, W. Applied Linear Statistical Models Vol. 5 (McGraw-Hill Irwin, 2005).
Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only anova procedures. in Proceedings of the SIGCHI conference on human factors in computing systems (eds. Tan, D., Fitzpatrick, G., Gutwin, C., Begole, B. & Kellogg, W. A.), 143–146, doi:https://doi.org/10.1145/1978942.1978963 (Association for Computing Machinery, New York, United States, 2011)
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Source: Ecology - nature.com