in

The changing face of floodplains in the Mississippi River Basin detected by a 60-year land use change dataset

  • 1.

    Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. In D. P. Dodge [ed.] Proceedings of the International Large River Symposium, Canadian Special Publication of Fisheries and Aquatic Sciences 106, 110-127 https://www.waterboards.ca.gov/waterrights//water_issues/programs/bay_delta/docs/cmnt081712/sldmwa/junketal1989.pdf (1989).

  • 2.

    Karpack, M. N., Morrison, R. R. & McManamay, R. A. Quantitative assessment of floodplain functionality using an index of integrity. Ecological Indicators 111, 106051, https://doi.org/10.1016/j.ecolind.2019.106051 (2020).

    Article 

    Google Scholar 

  • 3.

    Costanza, R. et al. Changes in the global value of ecosystem services. Global Environmental Change 26, 152–158, https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).

    Article 

    Google Scholar 

  • 4.

    Wohl, E., Lane, S. N. & Wilcox, A. C. The science and practice of river restoration. Water Resources Research 51, 5974–5997, https://doi.org/10.1002/2014WR016874 (2015).

    ADS 
    Article 

    Google Scholar 

  • 5.

    Hamilton, S. K. Wetlands of Large Rivers: Flood plains. Encyclopedia of Inland Waters 607-610 https://doi.org/10.1016/B978-012370626-3.00065-X (2009).

  • 6.

    Opperman, J. J., Luster, R., McKenney, B. A., Roberts, M. & Meadows, A. W. Ecologically functional floodplains: connectivity, flow regime, and scale. Journal of the American Water Resources Association 46, 211–226, https://doi.org/10.1111/j.1752-1688.2010.00426.x (2010).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Waltham, N. J. et al. Lost floodplain wetland environments and efforts to restore connectivity, habitat, and water quality settings on the great barrier reef. Front. Mar. Sci. 6, 71, https://doi.org/10.3389/fmars.2019.00071 (2019).

    Article 

    Google Scholar 

  • 8.

    Tockner, K. & Stanford, J. A. Review of: riverine flood plains: present state and future trends. Biological Sciences Faculty Publications 29, 166 https://scholarworks.umt.edu/biosci_pubs/166 (2002).

  • 9.

    Erwin, K. L. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17, 71, https://doi.org/10.1007/s11273-008-9119-1 (2009).

    Article 

    Google Scholar 

  • 10.

    Johnson, K. A. et al. A benefit-cost analysis of floodplain land acquisition for US flood damage reduction. Nat Sustain 3, 56–62, https://doi.org/10.1038/s41893-019-0437-5 (2019).

    Article 

    Google Scholar 

  • 11.

    Quinn, N. et al. The spatial dependence of flood hazard and risk in the United States. Water Resources Research 55, 1890–1911, https://doi.org/10.1029/2018WR024205 (2019).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Pinter, N. One step forward, two steps back on U.S. floodplains. Science 308(5719), 207–208 https://science.sciencemag.org/content/308/5719/207 (2005).

  • 13.

    Kousky, C. & Walls, M. Floodplain conservation as a flood mitigation strategy: examining costs and benefits. Ecological Economics 104, 119–128, https://doi.org/10.1016/j.ecolecon.2014.05.001 (2014).

    Article 

    Google Scholar 

  • 14.

    Tullos, D. Opinion: how to achieve better flood-risk governance in the United States. Proceedings of the National Academy of Sciences of the United States of America 115(15), 3731–3734, https://doi.org/10.1073/pnas.1722412115 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Kundzewicz, Z. W., Hegger, D. L. T., Matczak, P. & Driessen, P. P. J. Opinion: flood-risk reduction: structural measures and diverse strategies. Proceedings of the National Academy of Sciences of the United States of America 115(49), 12321–12325, https://doi.org/10.1073/pnas.1818227115 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Lambin, E. F., Geist, H. J. & Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources 28, 205–241, https://doi.org/10.1146/annurev.energy.28.050302.105459 (2003).

    Article 

    Google Scholar 

  • 17.

    Entwistle, N. S., Heritage, G. L., Schofield, L. A. & Williamson, R. J. Recent changes to floodplain character and functionality in England. Catena 174, 490–498, https://doi.org/10.1016/j.catena.2018.11.018 (2019).

    Article 

    Google Scholar 

  • 18.

    Dewan, A. M. & Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Applied Geography 29, 390–401, https://doi.org/10.1016/j.apgeog.2008.12.005 (2009).

    Article 

    Google Scholar 

  • 19.

    Amoateng, P., Finlayson, C. M., Howard, J. & Wilson, B. Dwindling rivers and floodplains in Kumasi, Ghana: a socio-spatial analysis of the extent and trend. Applied Geography 90, 82–95, https://doi.org/10.1016/j.apgeog.2017.11.007 (2018).

    Article 

    Google Scholar 

  • 20.

    Rabalais, N. N., Turner, R. E. & Wiseman, W. J. Jr. Gulf of Mexico hypoxia, a.k.a. “the dead zone. Annual Review of Ecology and Systematics 33, 235–263, https://doi.org/10.1146/annurev.ecolsys.33.010802.150513 (2002).

    Article 

    Google Scholar 

  • 21.

    Wohl, E. An integrative conceptualization of floodplain storage. Reviews of Geophysics 59, e2020RG000724, https://doi.org/10.1029/2020RG000724 (2021).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Scott, D. T., Gomez-Velez, J. D., Jones, C. N. & Harvey, J. W. Floodplain inundation spectrum across the United States. Nat. Commun. 10, 5194, https://doi.org/10.1038/s41467-019-13184-4 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Hattermann, F. F. et al. Climatological drivers of changes in flood hazard in Germany. Acta Geophysica 61, 463–477, https://doi.org/10.2478/s11600-012-0070-4 (2013).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Mallakpour, I. & Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Change 5, 250–254, https://doi.org/10.1038/nclimate2516 (2015).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Corvalán, C., Hales, S., McMichael, A. J., Millennium Ecosystem Assessment (Program), & World Health Organization (Eds.). Ecosystems and human well-being: Health synthesis (World Health Organization, 2005).

  • 26.

    Enhancing Restoration and advancing knowledge of the upper Mississippi river: a strategic plan for the upper Mississippi river restoration program 2015-2025. https://www.umesc.usgs.gov/ltrmp/documents/umrr_strategic_plan_jan2015.pdf (USGS, 2015).

  • 27.

    Nardi, F., Annis, A., Di Baldassarre, G., Vivoni, E. R. & Grimaldi, S. GFPLAIN250m, a global high-resolution dataset of Earth’s floodplains. Scientific Data 6, 180309, https://doi.org/10.1038/sdata.2018.309 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Sohl, T. L. et al. Modeled historical land use and land cover for the conterminous United States: 1938-1992. U.S. Geological Survey data release https://doi.org/10.5066/F7KK99RR (2018).

  • 29.

    Sohl, T.L. et al. Conterminous United States land cover projections – 1992 to 2100. U.S. Geological Survey data release https://doi.org/10.5066/P95AK9HP (2018).

  • 30.

    Leopold, L. B., & Maddock, T. The hydraulic geometry of stream channels and some physiographic implications. (U.S. Geological Survey, 1953)

  • 31.

    Nardi, F., Vivoni, E. R. & Grimaldi, S. Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resources Research 42(9), https://doi.org/10.1029/2005WR004155 (2006).

  • 32.

    Di Baldassarre, G. et al. Brief communication: comparing hydrological and hydrogeomorphic paradigms for global flood hazard mapping. Nat. Hazards Earth Syst. Sci. 20, 1415–1419, https://doi.org/10.5194/nhess-20-1415-2020 (2020).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Homer, C. et al. Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS Journal of Photogrammetry and Remote Sensing 162, 184–199, https://doi.org/10.1016/j.isprsjprs.2020.02.019 (2020).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Yang, L. et al. A new generation of the United States national land cover database: requirements, research priorities, design, and implementation strategies. ISPRS Journal of Photogrammetry and Remote Sensing 146, 108–123, https://doi.org/10.1016/j.isprsjprs.2018.09.006 (2018).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Jin, S. et al. Overall methodology design for the United States National Land Cover Database 2016 products. Remote Sensing 11, 2971, https://doi.org/10.3390/rs11242971 (2019).

    ADS 
    Article 

    Google Scholar 

  • 36.

    USDA Census of Agriculture Historical Archive http://agcensus.mannlib.cornell.edu/AgCensus/homepage.do;jsessionid=17C0132051BEB31DF79D01B0D07300F2 (US Department of Agriculture, 2007).

  • 37.

    Sleeter, B. M. et al. Land-cover change in the conterminous United States from 1973 to 2000. Global Environmental Change 23(4), 733–748, https://doi.org/10.1016/j.gloenvcha.2013.03.006 (2013).

    Article 

    Google Scholar 

  • 38.

    Cao, Y. et al. Analysis of errors introduced by geographic coordinate systems on weather numeric prediction modeling. Geosci. Model Dev. 10(9), 3425–3440, https://doi.org/10.5194/gmd-10-3425-2017 (2017).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Piwowar, J. M., Ledrew, E. F. & Dudycha, D. J. Integration of spatial data in vector and raster formats in a geographic information system environment. International Journal of Geographical Information Systems 4, 429–444, https://doi.org/10.1080/02693799008941557 (2007).

    Article 

    Google Scholar 

  • 40.

    Croissant, C. Landscape patterns and parcel boundaries: an analysis of composition and configuration of land use and land cover in south-central Indiana. Agriculture Ecosystems and Environment 101, 219–232, https://doi.org/10.1016/j.agee.2003.09.006 (2004).

    Article 

    Google Scholar 

  • 41.

    LaGro Jr., J. A. Land-use Classification (Elsevier Press, 2005).

  • 42.

    Kutcher T. E. et al. Habitat and Land Cover Classification Scheme for the National Estuarine Research Reserve System. (National Estuarine Research Reserve System, 2008).

  • 43.

    Buskey, E. J. et al. in System-wide monitoring program of the national estuarine research reserve System: research and monitoring to address coastal management issues Chapter 21 (Academic Press, 2015).

  • 44.

    Feng, C.-C. & Flewelling, D. M. Assessment of semantic similarity between land use/land cover classification systems. Computers, Environment and Urban Systems 28(3), 229–246, https://doi.org/10.1016/S0198-9715(03)00020-6 (2004).

    Article 

    Google Scholar 

  • 45.

    Foufoula-Georgiou, E., Takbiri, Z., Czuba, J. A. & Schwenk, J. The change of nature and the nature of change in agricultural landscapes: Hydrologic regime shifts modulate ecological transitions. Water Resources Research 51, 6649–6671, https://doi.org/10.1002/2015WR017637 (2015).

    ADS 
    Article 

    Google Scholar 

  • 46.

    Biondini, M. & Kandus, P. Transition matrix analysis of land-cover change in the accretion area of the Lower Delta of the Paraná River (Argentina) reveals two succession pathways. Wetlands 26, 981–991, https://link.springer.com/article/10.1672/0277-5212(2006)26[981:TMAOLC]2.0.CO;2#citeas (2006).

  • 47.

    Hu, Y., Batunacun, Zhen, L. & Zhuang, D. Assessment of land-use and land-cover change in Guangxi, China. Sci Rep. 9, 2189, https://doi.org/10.1038/s41598-019-38487-w (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability 3, 564–570, https://doi.org/10.1038/s41893-020-0521-x (2020).

    Article 

    Google Scholar 

  • 49.

    Teferi, E., Bewket, W., Uhlenbrook, S. & Wenninger, J. Understanding recent land use and land cover dynamics in the source region of the Upper Blue Nile, Ethiopia: spatially explicit statistical modeling of systematic transitions. Agriculture, ecosystems & environment 165(15), 98–117, https://doi.org/10.1016/j.agee.2012.11.007 (2013).

    Article 

    Google Scholar 

  • 50.

    Yu, Z., Guo, X., Zeng, Y., Koga, M. & Vejre, H. Variations in land surface temperature and cooling efficiency of green space in rapid urbanization: the case of Fuzhou city, China. Urban forestry & urban greening 29, 113–121, https://doi.org/10.1016/j.ufug.2017.11.008 (2018).

    Article 

    Google Scholar 

  • 51.

    Yuan, F., Sawaya, K. E., Loeffelholz, B. C. & Bauer, M. E. Land cover classification and change analysis of the twin cities (Minnesota) metropolitan area by multitemporal Landsat remote sensing. Remote Sensing of Environment 98, 317–328, https://doi.org/10.1016/j.rse.2005.08.006 (2005).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Yuh, Y. G. et al. Effects of land cover change on great apes distribution at the Lobéké National Park and its surrounding forest management units, south-east Cameroon. A 13 year time series analysis. Sci. Rep. 9, 1445, https://doi.org/10.1038/s41598-018-36225-2 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Zhao, J., Yang, Y., Zhao, Q. & Zhao, Z. Effects of ecological restoration projects on changes in land cover: a case study on the Loess Plateau in China. Sci. Rep. 7, 44496, https://doi.org/10.1038/srep44496 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Rajib, A. et al. Land Use Changes in The Mississippi River Basin Floodplains: 1941 to 2000 (version 1). HydroShare https://doi.org/10.4211/hs.41a3a9a9d8e54cc68f131b9a9c6c8c54 (2021).

  • 55.

    Annis, A., Nardi, F., Morrison, R. R. & Castelli, F. Investigating hydrogeomorphic floodplain mapping performance with varying DTM resolution and stream order. Hydrological Sciences Journal 64(5), 525–538, https://doi.org/10.1080/02626667.2019.1591623 (2019).

    Article 

    Google Scholar 

  • 56.

    Dottori, F. et al. Development and evaluation of a framework for global flood hazard mapping. Advances in Water Resources 94, 87–102, https://doi.org/10.1016/j.advwatres.2016.05.002 (2016).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Scheel, K., Morrison, R. R., Annis, A. & Nardi, F. Understanding the large-scale influence of levees on floodplain connectivity using a hydrogeomorphic approach. Journal of the American Water Resources Association 55(2), 413–429, https://doi.org/10.1111/1752-1688.12717 (2019).

    ADS 
    Article 

    Google Scholar 

  • 58.

    Climate Change Initiative (CCI) Land Cover products http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2018).

  • 59.

    Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (European Space Agency, 2017).

  • 60.

    Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data 3, 160018, https://doi.org/10.1038/sdata.2016.18 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Improving pesticide-use data for the EU

    Fitness consequences of targeted gene flow to counter impacts of drying climates on terrestrial-breeding frogs