in

Molecular species delimitation refines the taxonomy of native and nonnative physinine snails in North America

  • 1.

    Mayr, E. The species concept: Semantics versus semantics. Evolution 3, 371–372 (1949).

    Article 

    Google Scholar 

  • 2.

    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).

    Article 

    Google Scholar 

  • 3.

    Mace, G. M. The role of taxonomy in species conservation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 711–719 (2004).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Gustafson, K. D., Kensinger, B. J., Bolek, M. G. & Luttbeg, B. Distinct snail (Physa) morphotypes from different habitats converge in shell shape and size under common garden conditions. Evol. Ecol. Res. 16, 77–89 (2014).

    Google Scholar 

  • 5.

    Aksenova, O. V. et al. Species richness, molecular taxonomy and biogeography of the radicine pond snails (Gastropoda: Lymnaeidae) in the Old World. Sci. Rep. 8, 1–7 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Liu, H. P. & Hershler, R. A new species and range extensions for three other species of pebblesnails (Lithoglyphidae, Fluminicola) from the upper Klamath basin, California-Oregon. ZooKeys 812, 47–67 (2019).

    Article 

    Google Scholar 

  • 7.

    Alda, P. et al. Systematics and geographical distribution of Galba species, a group of cryptic and worldwide freshwater snails. Mol. Phylogenet. Evol. 157, 107035 (2021).

    PubMed 
    Article 

    Google Scholar 

  • 8.

    Taylor, D. W. Introduction to Physidae (Gastropoda: Hygrophila); biogeography, classification, morphology. Rev. Biol. Trop. 51(Supplement 1), 1–287 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Wethington, A. R. & Lydeard, C. A molecular phylogeny of Physidae (Gastropoda: Basommatophora) based on mitochondrial DNA sequences. J. Molluscan Stud. 73, 241–257 (2007).

    Article 

    Google Scholar 

  • 10.

    Ng, T. H. et al. Molluscs for sale: assessment of freshwater gastropods and bivalves in the ornamental pet trade. PLoS ONE 11, e0161130 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 11.

    Saito, T., Prozorova, L., Hirano, T., Fukuda, H. & Chiba, S. Endangered freshwater limpets in Japan are actually alien invasive species. Conserv. Genet. 19, 947–958 (2018).

    Article 

    Google Scholar 

  • 12.

    Lydeard, C., Campbell, D. & Golz, M. Physa acuta Draparnaud, 1805 should be treated as a native of North America, not Europe. Malacologia 59, 347–350 (2016).

    Article 

    Google Scholar 

  • 13.

    Albrecht, C., Kroll, O., Terrazas, E. M. & Wilke, T. Invasion of ancient Lake Titicaca by the globally invasive Physa acuta (Gastropoda: Pulmonata: Hygrophila). Biol. Invasions 11, 1821–1826 (2009).

    Article 

    Google Scholar 

  • 14.

    Ng, T. H., Tan, S. K. & Yeo, D. C. Clarifying the identity of the long-established, globally-invasive Physa acuta Draparnaud, 1805 (Gastropoda: Physidae) in Singapore. BioInvasions Rec. 4, 189–194 (2015).

    Article 

    Google Scholar 

  • 15.

    Collado, G. A. Unraveling cryptic invasion of a freshwater snail in Chile based on molecular and morphological data. Biodivers. Conserv. 26, 567–578 (2017).

    Article 

    Google Scholar 

  • 16.

    Johnson, P. D. et al. Conservation status of freshwater gastropods of Canada and the United States. Fisheries 38, 247–282 (2013).

    Article 

    Google Scholar 

  • 17.

    Strong, E. E. & Whelan, N. V. Assessing the diversity of western North American Juga (Semisulcospiridae, Gastropoda). Mol. Phylogenet. Evol. 136, 87–103 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Hebert, P. D., Ratnasingham, S. & De Waard, J. R. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B 270(supplement 1), S96-99 (2003).

    CAS 

    Google Scholar 

  • 19.

    Stöger, I. & Schrödl, M. Mitogenomics does not resolve deep molluscan relationships (yet?). Mol. Phylogenet. Evol. 69, 376–392 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Cunha, T. J. & Giribet, G. A congruent topology for deep gastropod relationships. Proc. R. Soc. B 286, 20182776 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Varney, R. M. et al. Assessment of mitochondrial genomes for heterobranch gastropod phylogenetics. BMC Ecol. Evol. 21, 6 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Remigio, E. A. & Hebert, P. D. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Mol. Phylogenet. Evol. 29, 641–647 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Collins, R. A. & Cruickshank, R. H. The seven deadly sins of DNA barcoding. Mol. Ecol. Resour. 13, 969–975 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Ratnasingham, S. & Hebert, P. D. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Whelan, N. V. & Strong, E. E. Morphology, molecules and taxonomy: Extreme incongruence in pleurocerids (Gastropoda, Cerithioidea, Pleuroceridae). Zoolog. Scr. 45, 62–87 (2016).

    Article 

    Google Scholar 

  • 26.

    Razkin, O., Gómez-Moliner, B. J., Vardinoyannis, K., Martínez-Ortí, A. & Madeira, M. J. Species delimitation for cryptic species complexes: Case study of Pyramidula (Gastropoda, Pulmonata). Zool. Scr. 46, 55–72 (2017).

    Article 

    Google Scholar 

  • 27.

    Liu, H. P., Hershler, R. & Hovingh, P. Molecular evidence enables further resolution of the western North American Pyrgulopsis kolobensis complex (Caenogastropoda: Hydrobiidae). J. Molluscan Stud. 84, 103–107 (2018).

    Article 

    Google Scholar 

  • 28.

    Ward, R. D. DNA barcode divergence among species and genera of birds and fishes. Mol. Ecol. Resour. 9, 1077–1085 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Saadi, A. J., Davison, A. & Wade, C. M. Molecular phylogeny of freshwater snails and limpets (Panpulmonata: Hygrophila). Zool. J. Linn. Soc. 190, 518–531 (2020).

    Article 

    Google Scholar 

  • 30.

    Frest, T. J. & Johannes, E. J. An annotated checklist of Idaho land and freshwater mollusks. J. Idaho Acad. Sci. 36(2), 1–51 (2000).

    Google Scholar 

  • 31.

    Pip, E. & Franck, J. P. Molecular phylogenetics of central Canadian Physidae (Pulmonata: Basommatophora). Can. J. Zool. 86, 10–16 (2008).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Tariel, J., Plénet, S. & Luquet, É. Transgenerational plasticity of inducible defences: Combined effects of grand-parental, parental and current environments. Ecol. Evol. 10, 2367–2376 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Perrin, N. The life history parameters of Physa acuta (Gastropoda, Mollusca) in experimental conditions. Revue Suisse Zoologique 93, 725–736 (1986).

    Article 

    Google Scholar 

  • 34.

    Taylor, D. W. New species of Physa (Gastropoda: Hygrophila) from the western United States. Malacol. Rev. 21, 43–79 (1988).

    Google Scholar 

  • 35.

    U.S. Fish and Wildlife Service. Determination of endangered or threatened status for five aquatic snails in south central Idaho. Fed. Reg. 57, 59242–59257 (1992).

    Google Scholar 

  • 36.

    Rogers, D. C. & Wethington, A. R. Physa natricina Taylor 1988, junior synonym of Physa acuta Draparnaud, 1805 (Pulmonata: Physidae). Zootaxa 1662, 45–51 (2007).

    Google Scholar 

  • 37.

    Gates, K. K., Kerans, B. L., Keebaugh, J. L., Kalinowski, S. & Vu, N. Taxonomic identity of the endangered Snake River physa, Physa natricina (Pulmonata: Physidae) combining traditional and molecular techniques. Conserv. Genet. 14, 159–169 (2013).

    Article 

    Google Scholar 

  • 38.

    Moore, A. C., Burch, J. B. & Duda, T. F. Recognition of a highly restricted freshwater snail lineage (Physidae: Physella) in southeastern Oregon: Convergent evolution, historical context, and conservation considerations. Conserv. Genet. 16, 113–123 (2015).

    Article 

    Google Scholar 

  • 39.

    Dillon, R. T., Robinson, J. D. & Wethington, A. R. Empirical estimates of reproductive isolation among the freshwater pulmonate snails Physa acuta, P. pomilia, and P. hendersoni. Malacologia 49, 283–292 (2007).

    Article 

    Google Scholar 

  • 40.

    De Queiroz, K. Species concepts and species delimitation. Syst. Biol. 56, 879–886 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Dyke, A. S., Moore, A. & Robertson, L. Deglaciation of North America. Geological Survey of Canada Open File 1574 (2003).

  • 42.

    Wethington, A. R., Wise, J. & Dillon, R. T. Jr. Genetic and morphological characterization of the Physidae of South Carolina (Gastropoda: Pulmonata: Basommatophora), with description of a new species. Nautilus 123, 282–292 (2009).

    Google Scholar 

  • 43.

    Ebbs, E. T., Loker, E. S. & Brant, S. V. Phylogeography and genetics of the globally invasive snail Physa acuta Draparnaud 1805, and its potential to serve as an intermediate host to larval digenetic trematodes. BMC Evol. Biol. 18, 1–7 (2018).

    Article 

    Google Scholar 

  • 44.

    Duggan, I. C. The freshwater aquarium trade as a vector for incidental invertebrate fauna. Biol. Invasions 12, 3757–3770 (2010).

    Article 

    Google Scholar 

  • 45.

    Van Leeuwen, C. H. et al. How did this snail get here? Several dispersal vectors inferred for an aquatic invasive species. Freshw. Biol. 58, 88–99 (2013).

    Article 

    Google Scholar 

  • 46.

    Coughlan, N. E., Kelly, T. C., Davenport, J. & Jansen, M. A. Up, up and away: Bird-mediated ectozoochorous dispersal between aquatic environments. Freshw. Biol. 62, 631–648 (2017).

    Article 

    Google Scholar 

  • 47.

    Bony, Y. K. et al. Ecological conditions for spread of the invasive snail Physa marmorata (Pulmonata: Physidae) in the Ivory Coast. Afr. Zool. 43, 53–60 (2008).

    Article 

    Google Scholar 

  • 48.

    Pierce, K. L. & Morgan, L. A. Is the track of the Yellowstone hotspot driven by a deep mantle plume?—Review of volcanism, faulting, and uplift in light of new data. J. Volcanol. Geotherm. Res. 188, 1–25 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 49.

    Smith, G. R. et al. Biogeography and timing of evolutionary events among Great Basin fishes. In Great Basin Aquatic Systems History. Smithsonian Contributions to the Earth Sciences Vol. 33 (eds Hershler, R. et al.) 175–234 (Smithsonian Institution Press, 2002).

    Google Scholar 

  • 50.

    Oviatt, C. G. Chronology of Lake Bonneville, 30,000 to 10,000 yr BP. Quatern. Sci. Rev. 110, 166–171 (2015).

    Article 

    Google Scholar 

  • 51.

    Safran, E. B. et al. Plugs or flood-makers? The unstable landslide dams of eastern Oregon. Geomorphology 248, 237–251 (2015).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Ely, L. L. et al. Owyhee River intracanyon lava flows: Does the river give a dam?. GSA Bull. 124, 1667–1687 (2012).

    Article 

    Google Scholar 

  • 53.

    Matthews, J. et al. Rapid range expansion of the invasive quagga mussel in relation to zebra mussel presence in the Netherlands and western Europe. Biol. Invasions 16, 23–42 (2014).

    Article 

    Google Scholar 

  • 54.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechol. 3, 294–299 (1994).

    CAS 

    Google Scholar 

  • 55.

    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Uit de Weerd, D. R. & Gittenberger, E. Phylogeny of the land snail family Clausiliidae (Gastropoda: Pulmonata). Mol. Phylogenet. Evol. 67, 201–216 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Nixon, K. C. & Wheeler, Q. D. An amplification of the phylogenetic species concept. Cladistics 6, 211–223 (1990).

    Article 

    Google Scholar 

  • 59.

    Galtier, N. Delineating species in the speciation continuum: A proposal. Evol. Appl. 12, 657–663 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    DeSalle, R., Egan, M. G. & Siddall, M. The unholy trinity: Taxonomy, species delimitation and DNA barcoding. Philos. Trans. R. Soc. B Biol. Sci. 360, 1905–1916 (2005).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Bouchet, P. et al. Revised classification, nomenclator and typification of gastropod and monoplacophoran families. Malacologia 61, 1–526 (2017).

    Article 

    Google Scholar 

  • 62.

    Wethington, A. R. & Guralnick, R. Are populations of physids from different hot springs distinctive lineages?. Am. Malacol. Bull. 19, 135–144 (2004).

    Google Scholar 

  • 63.

    Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Delicado, D., Arconada, B., Aguado, A. & Ramos, M. A. Multilocus phylogeny, species delimitation and biogeography of Iberian valvatiform springsnails (Caenogastropoda: Hydrobiidae), with the description of a new genus. Zool. J. Linn. Soc. 186, 892–914 (2019).

    Article 

    Google Scholar 

  • 68.

    Kapli, T. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638 (2016).

    Google Scholar 

  • 69.

    Clement, M., Posada, D. C. & Crandall, K. A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659 (2000).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Hart, M. W. & Sunday, J. Things fall apart: Biological species form unconnected parsimony networks. Biol. Lett. 3, 509–512 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Minh, B. Q., Nguyen, M. A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Meier, R., Zhang, G. & Ali, F. The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst. Biol. 57, 809–813 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 74.

    Dellicour, S. & Flot, J. F. The hitchhiker’s guide to single-locus species delimitation. Mol. Ecol. Resour. 18, 1234–1246 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 75.

    Avise, J. C. Phylogeography: The History and Formation of Species (Harvard University Press, 2000).

    Book 

    Google Scholar 

  • 76.

    Dinapoli, A., Tamer, C., Franssen, S., Naduvilezhath, L. & Klussmann-Kolb, A. Utility of H3-gene sequences for phylogenetic reconstruction—a case study of heterobranch Gastropoda. Bonner Zoologische Beiträge 55(3/4), 191–202 (2006).

    Google Scholar 

  • 77.

    Ayyagari, V. S. & Sreerama, K. Molecular phylogenetic analysis of Pulmonata (Mollusca: Gastropoda) on the basis of histone-3 gene. Beni-Suef Univ. J. Basic Appl. Sci. 8, 1–8 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Functional diversity effects on productivity increase with age in a forest biodiversity experiment

    MIT Energy Night 2021: Connecting global innovators to local talent