Cubasch, U. et al. Climate Change 2013: the physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Vol 1 (eds Stocker, T. F. et al.) 119–158 (Cambridge University Press, 2013).
Jackson, R. B. et al. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab9ed2 (2020).
Google Scholar
Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623. https://doi.org/10.5194/essd-12-1561-2020 (2020).
Google Scholar
Hobson, P. N. & Stewart, C. S. The rumen Microbial Ecosystem (Blackie Academic & Professional, 1997).
Google Scholar
Henderson, G. et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5, 14567. https://doi.org/10.1038/srep14567 (2015).
Google Scholar
Li, Y. et al. The complete genome sequence of the methanogenic archaeon ISO4-H5 provides insights into the methylotrophic lifestyle of a ruminal representative of the Methanomassiliicoccales. Stand. Genom. Sci. 11, 59. https://doi.org/10.1186/s40793-016-0183-5 (2016).
Google Scholar
Lang, K. et al. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum”. Appl. Environ. Microbiol. 81, 1338–1352. https://doi.org/10.1128/AEM.03389-14 (2015).
Google Scholar
Hoehler, T., Losey, N. A., Gunsalus, R. P. & McInerney, M. J. In Biogenesis of Hydrocarbons (eds Stams, A. & Sousa, D.) 1–26 (Springer, 2018).
Neill, A. R., Grime, D. W. & Dawson, R. M. C. Conversion of choline methyl groups through trimethylamine into methane in the rumen. Biochem. J. 170, 529–535. https://doi.org/10.1042/bj1700529 (1978).
Google Scholar
Erdman, R. A. & Sharma, B. K. Effect of dietary rumen-protected choline in lactating dairy cows. J. Dairy Sci. 74, 1641–1647. https://doi.org/10.3168/jds.S0022-0302(91)78326-4 (1991).
Google Scholar
Sharma, B. K. & Erdman, R. A. Effects of dietary and abomasally infused choline on milk production responses of lactating dairy cows. J. Nutr. 119, 248–254. https://doi.org/10.1093/jn/119.2.248 (1989).
Google Scholar
Soliva, C. & Hess, H. In Measuring Methane Production from Ruminants: Measuring Methane Emission of Ruminants by In Vitro and In Vivo Techniques (eds Makkar, H. P. & Vercoe, P. E.) 15–31 (Springer, 2007).
Google Scholar
Craciun, S. & Balskus, E. P. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. PNAS 109, 21307–21312. https://doi.org/10.1073/pnas.1215689109 (2012).
Google Scholar
Jameson, E. et al. Anaerobic choline metabolism in microcompartments promotes growth and swarming of Proteus mirabilis. Environ. Microbiol. 18, 2886–2898. https://doi.org/10.1111/1462-2920.13059 (2016).
Google Scholar
Herring, T. I., Harris, T. N., Chowdhury, C., Mohanty, S. K. & Bobik, T. A. A bacterial microcompartment is used for choline fermentation by Escherichia coli 536. J. Bacteriol. 200, e00764-e817. https://doi.org/10.1128/JB.00764-17 (2018).
Google Scholar
EFSA. Scientific Opinion on safety and efficacy of choline chloride as a feed additive for all animal species. EFSA J. 9, 2353 (2011).
Lewis, D. J. Ammonia toxicity in the ruminant. J. Agric. Sci. 55, 111–117 (1960).
Google Scholar
Hogan, J. P. Absorption of ammonia through rumen of sheep. Aust. J. Biol. Sci. 14, 448–450. https://doi.org/10.1071/Bi9610448 (1961).
Google Scholar
Sprott, G. D. & Patel, G. B. Ammonia toxicity in pure cultures of methanogenic bacteria. Syst. Appl. Microbiol. 7, 358–363 (1986).
Google Scholar
Lewis, D. Ammonia toxicity in the ruminant. J. Agric. Sci. 55(1), 111–117 (1960).
Google Scholar
Ungerfeld, E. M., Rust, S. R. & Burnett, R. Increases in microbial nitrogen production and efficiency in vitro with three inhibitors of ruminal methanogenesis. Can. J. Microbiol. 53, 496–503. https://doi.org/10.1139/W07-008 (2007).
Google Scholar
Lundgren, B. R., Sarwar, Z., Pinto, A., Ganley, J. G. & Nomura, C. T. Ethanolamine catabolism in Pseudomonas aeruginosa PAO1 is regulated by the enhancer-binding protein EatR (PA4021) and the alternative sigma factor RpoN. J. Bacteriol. 198, 2318–2329. https://doi.org/10.1128/JB.00357-16 (2016).
Google Scholar
Rychlik, J. L., LaVera, R. & Russell, J. B. Amino acid deamination by ruminal Megasphaera elsdenii strains. Curr. Microbiol. 45, 340–345. https://doi.org/10.1007/s00284-002-3743-4 (2002).
Google Scholar
Park, K. & Lee, H. Effects of nitrogen gas flushing in comparison with argon on rumen fermentation characteristics in in vitro studies. J. Anim. Sci. Technol. 62, 52–57. https://doi.org/10.5187/jast.2020.62.1.52 (2020).
Google Scholar
Hobson, P. N., Summers, R., Postgate, J. R. & Ware, D. A. Nitrogen fixation in the rumen of a living sheep. J. Gen. Microbiol. 77, 225–226. https://doi.org/10.1099/00221287-77-1-225 (1973).
Google Scholar
Harada, N., Nishiyama, M. & Matsumoto, S. Inhibition of methanogens increases photo-dependent nitrogenase activities in anoxic paddy soil amended with rice straw. FEMS Microbiol. Ecol. 35, 231–238. https://doi.org/10.1111/j.1574-6941.2001.tb00808.x (2001).
Google Scholar
Haaker, H. & Klugkist, J. The bioenergetics of electron transport to nitrogenase. J FEMS Microbiol. Lett. 46, 57–71 (1987).
Google Scholar
Edgren, T. & Nordlund, S. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J. Bacteriol. 186, 2052–2060 (2004).
Google Scholar
Igai, K. et al. Nitrogen fixation and nifH diversity in human gut microbiota. Sci. Rep. 6, 31942. https://doi.org/10.1038/srep31942 (2016).
Google Scholar
Ungerfeld, E. M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 6, 37. https://doi.org/10.3389/fmicb.2015.00037 (2015).
Google Scholar
Leahy, S. C. et al. The complete genome sequence of Methanobrevibacter sp. AbM4. Stand. Genom. Sci. 8, 215–227. https://doi.org/10.4056/sigs.3977691 (2013).
Google Scholar
Hoedt, E. C. et al. Differences down-under: Alcohol-fueled methanogenesis by archaea present in Australian macropodids. ISME J. 10, 2376–2388. https://doi.org/10.1038/ismej.2016.41 (2016).
Google Scholar
Ungerfeld, E. M. & Kohn, R. A. In Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress (eds Sejrsen, K. et al.) 55–85 (Wageningen Academic Publishers, 2006).
van Zijderveld, S. M. et al. Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. J. Dairy Sci. 93, 5856–5866. https://doi.org/10.3168/jds.2010-3281 (2010).
Google Scholar
Lan, W. & Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 654, 1270–1283. https://doi.org/10.1016/j.scitotenv.2018.11.180 (2019).
Google Scholar
Loubinoux, J., Bronowicki, J. P., Pereira, I. A., Mougenel, J. L. & Faou, A. E. Sulfate-reducing bacteria in human feces and their association with inflammatory bowel diseases. FEMS Microbiol. Ecol. 40, 107–112. https://doi.org/10.1111/j.1574-6941.2002.tb00942.x (2002).
Google Scholar
Gould, D. H., Cummings, B. A. & Hamar, D. W. In vivo indicators of pathologic ruminal sulphide production in steers with diet-induced polioencephalomalacia. J. Vet. Diagn. Invest. 9, 72–76. https://doi.org/10.1177/104063879700900113 (1997).
Google Scholar
Anderson, R. C., Rasmussen, M. A., Jensen, N. S. & Allison, M. J. Denitrobacterium detoxificans gen. nov., sp. nov., a ruminal bacterium that respires on nitrocompounds. Int. J. Syst. Evol. Microbiol. 50(Pt 2), 633–638. https://doi.org/10.1099/00207713-50-2-633 (2000).
Google Scholar
Anderson, R. C. et al. Ruminal fermentation of anti-methanogenic nitrate- and nitro-containing forages in vitro. Front. Vet. Sci. 3, 62. https://doi.org/10.3389/fvets.2016.00062 (2016).
Google Scholar
Zhang, Z. W. et al. Nitrocompounds as potential methanogenic inhibitors in ruminant animals: A review. Anim. Feed Sci. Tech. 236, 107–114. https://doi.org/10.1016/j.anifeedsci.2017.12.010 (2018).
Google Scholar
Marounek, M., Fliegrova, K. & Bartos, S. Metabolism and some characteristics of ruminal strains of Megasphaera elsdenii. Appl. Environ. Microbiol. 55, 1570–1573. https://doi.org/10.1128/AEM.55.6.1570-1573.1989 (1989).
Google Scholar
Hackmann, T. J., Ngugi, D. K., Firkins, J. L. & Tao, J. Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids. Environ. Microbiol. 19, 4670–4683. https://doi.org/10.1111/1462-2920.13929 (2017).
Google Scholar
Janssen, P. H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160, 1–22. https://doi.org/10.1016/j.anifeedsci.2010.07.002 (2010).
Google Scholar
Greening, C. et al. Diverse hydrogen production and consumption pathways influence methane production in ruminants. ISME J. 13, 2617–2632. https://doi.org/10.1038/s41396-019-0464-2 (2019).
Google Scholar
Gilmour, M., Flint, H. J. & Mitchell, W. J. Multiple lactate dehydrogenase activities of the rumen bacterium Selenomonas ruminantium. Microbiol. 140(Pt 8), 2077–2084. https://doi.org/10.1099/13500872-140-8-2077 (1994).
Google Scholar
Chowdhury, N. P., Kahnt, J. & Buckel, W. Reduction of ferredoxin or oxygen by flavin-based electron bifurcation in Megasphaera elsdenii. FEBS J. 282, 3149–3160. https://doi.org/10.1111/febs.13308 (2015).
Google Scholar
Weghoff, M. C., Bertsch, J. & Muller, V. A novel mode of lactate metabolism in strictly anaerobic bacteria. Environ. Microbiol. 17, 670–677. https://doi.org/10.1111/1462-2920.12493 (2015).
Google Scholar
Hernandez, J., Benedito, J. L., Abuelo, A. & Castillo, C. Ruminal acidosis in feedlot: from aetiology to prevention. Sci. World J. 2014, 702572. https://doi.org/10.1155/2014/702572 (2014).
Google Scholar
Vuotto, C., Barbanti, F., Mastrantonio, P. & Donelli, G. Lactobacillus brevis CD2 inhibits Prevotella melaninogenica biofilm. Oral Dis. 20, 668–674. https://doi.org/10.1111/odi.12186 (2014).
Google Scholar
van Lingen, H. J. et al. Thermodynamic driving force of hydrogen on rumen microbial metabolism: A theoretical investigation. PLoS One 11, e0161362. https://doi.org/10.1371/journal.pone.0161362 (2016).
Google Scholar
Ungerfeld, E. M., Aedo, M. F., Martinez, E. D. & Saldivia, M. Inhibiting methanogenesis in rumen batch cultures did not increase the recovery of metabolic hydrogen in microbial amino acids. Microorganisms 7, 155. https://doi.org/10.3390/microorganisms7050115 (2019).
Google Scholar
Ng, F. et al. An adhesin from hydrogen-utilizing rumen methanogen Methanobrevibacter ruminantium M1 binds a broad range of hydrogen-producing microorganisms. Environ. Microbiol. 18, 3010–3021. https://doi.org/10.1111/1462-2920.13155 (2016).
Google Scholar
Soliva, C. R., Amelchanka, S. L., Duval, S. M. & Kreuzer, M. Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). Brit. J. Nutr. 106, 114–122. https://doi.org/10.1017/S0007114510005684 (2011).
Google Scholar
Terranova, M. et al. Increasing the proportion of hazel leaves in the diet of dairy cows reduced methane yield and excretion of nitrogen in volatile form, but not milk yield. Anim. Feed Sci. Technol. 276, 114796. https://doi.org/10.1016/j.anifeedsci.2020.114790 (2021).
Google Scholar
Ehrlich, G. G., Goerlitz, D. F., Bourell, J. H., Eisen, G. V. & Godsy, E. M. Liquid chromatographic procedure for fermentation product analysis in the identification of anaerobic bacteria. Appl. Environ. Microbiol. 42, 878–885 (1981).
Google Scholar
Bica, R. et al. Nuclear magnetic resonance to detect rumen metabolites associated with enteric methane emissions from beef cattle. Sci. Rep. 10, 5578. https://doi.org/10.1038/s41598-020-62485-y (2020).
Google Scholar
Henderson, G. et al. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities. PLoS One 8, e74787. https://doi.org/10.1371/journal.pone.0074787 (2013).
Google Scholar
Kittelmann, S. et al. Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8, e47879. https://doi.org/10.1371/journal.pone.0047879 (2013).
Google Scholar
Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Comm. 10, 1014. https://doi.org/10.1038/s41467-019-08844-4 (2019).
Google Scholar
Paoli, L. et al. Uncharted biosynthetic potential of the ocean microbiome. bioRxiv https://doi.org/10.1101/2021.03.24.436479 (2021).
Google Scholar
Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. in 9th Annual Genomics of Energy & Environment Meeting. (Lawrence Berkeley National Lab (LBNL), Berkeley, CA, USA). https://www.osti.gov/servlets/purl/1241166 (2014).
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824–834. https://doi.org/10.1101/gr.213959.116 (2017).
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 (2009).
Google Scholar
Kang, D. D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359. https://doi.org/10.7717/peerj.7359 (2019).
Google Scholar
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055. https://doi.org/10.1101/gr.186072.114 (2015).
Google Scholar
Seshadri, R. et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 36, 359–367. https://doi.org/10.1038/nbt.4110 (2018).
Google Scholar
Stewart, R. D. et al. Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37, 953–961. https://doi.org/10.1038/s41587-019-0202-3 (2019).
Google Scholar
Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119. https://doi.org/10.1186/1471-2105-11-119 (2010).
Google Scholar
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).
Google Scholar
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acid Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).
Google Scholar
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).
Google Scholar
Li, L., Stoeckert, C. J. Jr. & Roos, D. S. OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189. https://doi.org/10.1101/gr.1224503 (2003).
Google Scholar
Allen, B., Drake, M., Harris, N. & Sullivan, T. Using KBase to assemble and annotate prokaryotic genomes. Curr. Protoc. Microbiol. 46, 1E 13 11-11E 13 18. https://doi.org/10.1002/cpmc.37 (2017).
Google Scholar
RStudio Team. R Studio: Integrated development environment for R. Version 1.4.1106 (2021).
Oksanen, J. et al. The vegan package. Community Ecol. Pack. 10, 631–637 (2007).
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. https://doi.org/10.1186/s13059-014-0550-8 (2014).
Google Scholar
Source: Ecology - nature.com