Simeonovska-Nikolova, D. M. Interspecific social interactions and behavioral responses of Apodemus agrarius and Apodemus flavicollis to conspecific and heterospecific odors. J. Ethol. 25(1), 41–48 (2007).
Yoon, M.-H. & Han, C.-W. A study on daily torpor in the Korean striped field mouse (Apodemus agrarius). J. Life Sci. 16(4), 618–625 (2006).
Stryjek, R. et al. A methodological review of free-ranging rat assays as context-enriched supplements to traditional laboratory models. J. Neurosci. Methods 362, 109303 (2021).
Google Scholar
Stryjek, R. et al. Wild Norway rats do not avoid predator scents when collecting food in a familiar habitat: A field study. Sci. Rep. 8(1), 9475 (2018).
Google Scholar
Parsons, M. H. et al. Differential responses by city rats (Rattus norvegicus) toward male or female-produced pheromones in sheltered and high-risk presentations. J. Urban Ecol. 5, juz009 (2019).
Vukicevic-Radic, O. et al. Spatial distribution of Apodemus flavicollis and A. agrarius in a forest community quercetum-petraea on Mt. Avala (Serbia). Biotechnol. Biotechnol. Equip. 20(1), 57–60 (2006).
Filippucci, M. G., Macholan, M. & Michaux, J. R. Genetic variation and evolution in the genus Apodemus (Muridae: Rodentia). Biol. J. Lin. Soc. 75(3), 395–419 (2002).
Hille, A. et al. Morphometric, biochemical and molecular traits in Caucasian wood mice (podemus/Sylvaemus), with remarks on species divergence. Acta Theriol. 47(4), 389–416 (2002).
Rubtsov, N. et al. Comparative analysis of DNA homology in pericentric regions of chromosomes of wood mice from genera Apodemus and Sylvaemus. Russ. J. Genet. 51(12), 1233–1242 (2015).
Google Scholar
Suzuki, H. et al. Molecular phylogeny of wood mice (Apodemus, Muridae) in East Asia. Biol. J. Lin. Soc. 80(3), 469–481 (2003).
Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World: Lagomorphs and Rodents I (Lynx, 2016).
Ge, D. et al. Evolutionary history of field mice (Murinae: Apodemus), with emphasis on morphological variation among species in China and description of a new species. Zool. J. Linn. Soc. 187(2), 518–534 (2019).
Knitlová, M. & Horáček, I. Late Pleistocene-Holocene paleobiogeography of the genus Apodemus in central Europe. PLoS ONE 12(3), e0173668 (2017).
Google Scholar
Bronson, F. & Pryor, S. Ambient temperature and reproductive success in rodents living at different latitudes. Biol. Reprod. 29(1), 72–80 (1983).
Google Scholar
Kay, E. H. & Hoekstra, H. E. Rodents. Curr. Biol. 18(10), R406–R410 (2008).
Google Scholar
Auffray, J.-C., Renaud, S. & Claude, J. Rodent biodiversity in changing environments. Agric. Nat. Resour. 43(1), 83–93 (2009).
Atopkin, D., Bogdanov, A. & Chelomina, G. Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis. Russ. J. Genet. 43(6), 665–676 (2007).
Google Scholar
Zhigileva, O. Allozyme variability and the population genetic structure of the mice Apodemus agrarius, Mus musculus, and Sylvaemus uralensis (Rodenita, Muridae) in Western Siberia. Russ. J. Genet. 50(8), 838–845 (2014).
Google Scholar
Khlyap, L. A. et al. Aggregated occurrence records of the invasive alien striped field mouse (Apodemus agrarius Pall.) in the former USSR. Biodivers. Data J. 9, e69159 (2021).
Google Scholar
Klaus, S., Heldmaier, G. & Ricquier, D. Seasonal acclimation of bank voles and wood mice: Nonshivering thermogenesis and thermogenic properties of brown adipose tissue mitochondria. J. Comp. Physiol. B. 158(2), 157–164 (1988).
Google Scholar
Haim, A., McDevitt, R. & Speakman, J. Daily variations in the response of wood mice Apodemus sylvaticus to noradrenaline. J. Exp. Biol. 198(2), 561–565 (1995).
Google Scholar
Boratyński, J. S. & Szafrańska, P. A. Does basal metabolism set the limit for metabolic downregulation during torpor?. Physiol. Biochem. Zool. 91(5), 1057–1067 (2018).
Google Scholar
Bligh, J. et al. Thermoreception and Temperature Regulation (Springer, 1990).
Ijzerman, H. et al. Social thermoregulation: A meta-analysis. Psyarxiv https://doi.org/10.31234/osf.io/fc6yq (2021).
Google Scholar
Tertil, R. The effect of behavioural thermoregulation on the daily metabolism of Apodemus agrarius (Pallas, 1771). Acta Theriol. 17(22), 295–313 (1972).
Hester, P. et al. Effect of partial comb and wattle trim on pullet behavior and thermoregulation. Poult. Sci. 94(5), 860–866 (2015).
Google Scholar
Arad, Z., Midtgård, U. & Bernstein, M. H. Thermoregulation in turkey vultures: Vascular anatomy, arteriovenous heat exchange, and behavior. The Condor 91(3), 505–514 (1989).
Tattersall, G. J., Andrade, D. V. & Abe, A. S. Heat exchange from the toucan bill reveals a controllable vascular thermal radiator. Science 325(5939), 468–470 (2009).
Google Scholar
Raman, E. R., Roberts, M. F. & Vanhuyse, V. J. Body temperature control of rat tail blood flow. Am. J. Physiol. 245(3), R426–R432 (1983).
Google Scholar
Romanovsky, A. A., Ivanov, A. I. & Shimansky, Y. P. Selected contribution: ambient temperature for experiments in rats: A new method for determining the zone of thermal neutrality. J. Appl. Physiol. 92(6), 2667–2679 (2002).
Google Scholar
O’Leary, D. S., Johnson, J. M. & Taylor, W. F. Mode of neural control mediating rat tail vasodilation during heating. J. Appl. Physiol. 59(5), 1533–1538 (1985).
Google Scholar
Tan, C. L. & Knight, Z. A. Regulation of body temperature by the nervous system. Neuron 98(1), 31–48 (2018).
Google Scholar
Scholander, P. & Krog, J. Countercurrent heat exchange and vascular bundles in sloths. J. Appl. Physiol. 10(3), 405–411 (1957).
Google Scholar
Heyning, J. E. Thermoregulation in feeding baleen whales: Morphological and physiological evidence. Aquat. Mamm. 27(3), 284–288 (2001).
Davenport, J. et al. Topsy-turvy: Turning the counter-current heat exchange of leatherback turtles upside down. Biol. Lett. 11(10), 20150592 (2015).
Google Scholar
Dawson, N. & Keber, A. Physiology of heat loss from an extremity: The tail of the rat. Clin. Exp. Pharmacol. Physiol. 6(1), 69–80 (1979).
Google Scholar
Young, A. & Dawson, N. Evidence for on–off control of heat dissipation from the tail of the rat. Can. J. Physiol. Pharmacol. 60(3), 392–398 (1982).
Google Scholar
Škop, V. et al. Mouse thermoregulation: Introducing the concept of the thermoneutral point. Cell Rep. 31(2), 107501 (2020).
Google Scholar
Bozinovic, F. et al. Time and energy use under thermoregulatory constraints in a diurnal rodent. J. Therm. Biol 25(3), 251–256 (2000).
Sears, M. W. et al. Out in the cold: Physiological capacity influences behaviour in deer mice. Funct. Ecol. 23(4), 774–783 (2009).
Lagos, V. O., Bozinovic, F. & Contreras, L. C. Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: Thermoregulatory constraints or predation risk?. J. Mammal. 76(3), 900–905 (1995).
Murray, I. W. & Smith, F. A. Estimating the influence of the thermal environment on activity patterns of the desert woodrat (Neotoma lepida) using temperature chronologies. Can. J. Zool. 90(9), 1171–1180 (2012).
Hoogenboom, I. et al. Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis. Oecologia 61, 18–31 (1984).
Google Scholar
Bennie, J. J. et al. Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. USA 111(38), 13727–13732 (2014).
Google Scholar
D’Odorico, P., Okin, G. S. & Bestelmeyer, B. T. A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology 5(5), 520–530 (2012).
Pigeon, K. E. et al. Staying cool in a changing landscape: The influence of maximum daily ambient temperature on grizzly bear habitat selection. Oecologia 181(4), 1101–1116 (2016).
Google Scholar
Terrien, J., Perret, M. & Aujard, F. Behavioral thermoregulation in mammals: A review. Front. Biosci. 16(4), 1428–1444 (2011).
Morrison, P. R. & Tietz, W. J. Cooling and thermal conductivity in three small Alaskan mammals. J. Mammal. 38(1), 78–86 (1957).
Gosling, L. The twenty-four hour activity cycle of captive coypus (Myocastor coypus). J. Zool. 187(3), 341–367 (1979).
Moinard, C., Doncaster, C. P. & Barré, H. Indirect calorimetry measurements of behavioral thermoregulation in a semiaquatic social rodent, Myocastor coypus. Can. J. Zool. 70(5), 907–911 (1992).
Scholander, P. F. Evolution of climatic adaptation in homeotherms. Evolution 9, 15–26 (1955).
Prestrud, P. Adaptations by the arctic fox (Alopex lagopus) to the polar winter. Arctic 44, 132–138 (1991).
Weihong, J., Veitch, C. & Craig, J. L. An evaluation of the efficiency of rodent trapping methods: The effect of trap arrangement, cover type, and bait. N. Z. J. Ecol. 1999(23), 45–51 (1999).
Jackson, M., Hartley, S. & Linklater, W. Better food-based baits and lures for invasive rats Rattus spp. and the brushtail possum Trichosurus vulpecula: A bioassay on wild, free-ranging animals. J. Pest Sci. 89(2), 479–488 (2016).
Stryjek, R., Kalinowski, A. & Parsons, M. H, Unbiased sampling for rodents and other small mammals: How to overcome neophobia through use of an electronic-triggered live trap: A preliminary test. Front. Ecol. Evol. 7, 11 (2019).
Kilkenny, C. et al. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8(6), e1000412 (2010).
Google Scholar
Hardy, J. D. Physiology of temperature regulation. Physiol. Rev. 41(3), 521–606 (1961).
Google Scholar
Follmann, E. Behavioral thermoregulation of arctic foxes in winter. Biotelemetry 5, 36 (1978).
Rieger, I. Tail functions in ounces, Uncia uncia. Intl. Ped. Book Snow Leopards 4, 85–97 (1984).
Sokolov, V. Adaptations of mammal skin to the environment. In Mammal Skin 573–630 (University of California Press, 1993).
Donati, G. et al. Behavioral thermoregulation in a gregarious lemur, Eulemur collaris: Effects of climatic and dietary-related factors. Am. J. Phys. Anthropol. 144(3), 355–364 (2011).
Google Scholar
Dawson, T. J. & Fanning, F. D. Thermal and energetic problems of semiaquatic mammals: A study of the Australian water rat, including comparisons with the platypus. Physiol. Zool. 54(3), 285–296 (1981).
Mai, T. C. et al. Low-level radiofrequency exposure induces vasoconstriction in rats. Bioelectromagnetics 42, 455–463 (2021).
Google Scholar
Grant, R. Vasodilatation and body warming in the rat. J. Physiol. 167(2), 311 (1963).
Google Scholar
Steen, I. & Steen, J. Thermoregulatory importance of the beaver’s tail. Comp. Biochem. Physiol. 15(2), 267–270 (1965).
Google Scholar
Mohler, F. S. & Heath, J. E. Comparison of IR thermography and thermocouple measurement of heat loss from rabbit pinna. Am. J. Physiol. 254(2), R389–R395 (1988).
Google Scholar
Klir, J. J., Heath, J. E. & Bennani, N. An infrared thermographic study of surface temperature in relation to external thermal stress in the Mongolian gerbil, Meriones unguiculatus. Comp. Biochem. Physiol. A 96(1), 141–146 (1990).
Google Scholar
Vejmělka, F. et al. Heat dissipation in subterranean rodents: the role of body region and social organisation. Sci. Rep. 11(1), 1–17 (2021).
Heisig, M. et al. Frostbite protection in mice expressing an antifreeze glycoprotein. PLoS ONE 10(2), e0116562 (2015).
Google Scholar
Cilulko, J. et al. Infrared thermal imaging in studies of wild animals. Eur. J. Wildl. Res. 59(1), 17–23 (2013).
Auerbach, L. J. et al. A novel mouse model for frostbite injury. Wilderness Environ. Med. 24(2), 94–104 (2013).
Google Scholar
Phifer-Rixey, M. & Nachman, M. W. The Natural History of Model Organisms: Insights into mammalian biology from the wild house mouse Mus musculus. Elife 4, e05959 (2015).
Google Scholar
Source: Ecology - nature.com