in

Shallow-emerged coral may warn of deep-sea coral response to thermal stress

  • 1.

    Stone, R. P., Masuda, M. M. & Karinen, J. F. Assessing the ecological importance of red tree coral thickets in the eastern Gulf of Alaska. ICES J. Mar. Sci. 72, 900–915 (2014).

    Article 

    Google Scholar 

  • 2.

    Matsumoto, A. K. Recent observations on the distribution of deep-sea coral communities on the Shiribeshi Seamount, Sea of Japan’. In Freiwald, A., & Roberts, J. M. (eds) Cold-Water Corals and Ecosystems. 345–356. Springer, Berlin, Heidelberg (2005).

  • 3.

    Power, M. E. et al. Challenges in the quest for keystones: Identifying keystone species is difficult—But essential to understanding how loss of species will affect ecosystems. BioSci. 46, 609–620 (1996).

    Article 

    Google Scholar 

  • 4.

    Waller, R. G. et al. Phenotypic plasticity or a reproductive dead end? Primnoa pacifica (Cnidaria: Alcyonacea) in the Southeastern Alaska Region. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00709 (2019).

    Article 

    Google Scholar 

  • 5.

    Witherell, D. & Coon, C. ‘Protecting gorgonian corals off Alaska from fishing impacts.’ In: Willison, J. H. M., Hall J., Gass, S. E., Kenchington, E. L. R., Butler, M. & Doherty, P. (eds) First international symposium on deep-sea corals. Ecology Action Center and Nova Scotia Museum, Halifax, 117–115 (2000).

  • 6.

    Krieger, K. J. ‘Coral (Primnoa) impacted by fishing gear in the Gulf of Alaska.’ In: Willison, J. H. M., Hall J., Gass, S. E., Kenchington, E. L. R., Butler, M. & Doherty, P. (eds) First international symposium on deep-sea corals. Ecology Action Center and Nova Scotia Museum, Halifax, 106–116 (2000).

  • 7.

    Stone, R. P. & Shotwell, S. K. State of deep coral ecosystems in the Alaska Region: Gulf of Alaska, Bering Sea and the Aleutian Islands. The State of Deep Coral Ecosystems of the United States. NOAA Technical Memorandum CRCP-3, NOAA, Silver Spring, 65–108 (2007).

  • 8.

    Andrews, A. H. et al. Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia 471, 101–110 (2002).

    MathSciNet 
    Article 

    Google Scholar 

  • 9.

    Federal Register Fisheries of the exclusive economic zone of Alaska, 50 CFD, Ch. VI, Part 679 (10-1-17 edition): 490–964 (2017).

  • 10.

    Stone, R. P. & Mondragon, J. Deep-sea emergence of red tree corals (Primnoa pacifica) in Southeast Alaska glacial fjords. NOAA professional Papers NMFS 20, 33 p. https://doi.org/10.7755/PP.20 (2018).

  • 11.

    Waller, R. G., Stone, R. P., Johnstone, J. & Mondragon, J. Sexual reproduction and seasonality of the Alaskan red tree coral, Primnoa pacifia. PLoS ONE https://doi.org/10.1371/journal.pone.0090893 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Franzén, Å. ‘Spermatogenesis.’ In Giese, A., Pearse, J.S., & Pearse, V.B. (eds.) Reproduction of marine invertebrates, Vol. IX, 1–47. Blackwell Scientific Publications, Palo Alto, CA, & The Boxwood Press, Pacific Grove, CA (1987).

  • 13.

    Szmant-Froelich, A., Yevich, P. & Pilson, M. E. Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia). Biol. Bull. 158, 257–269 (1980).

    Article 

    Google Scholar 

  • 14.

    Schmidt, H. & Zissler, D. The sperm of the Anthozoa and their phylogenetic significance. Zoologica (Stuttg.) 44, 1–98 (1979).

    Google Scholar 

  • 15.

    Harrison, P.L. & Jamieson, B.G.M. ‘Cnidaria and Ctenophora.’ In Jamieson, B. G. M (ed), Progress in male gamete ultrastructure and phylogeny, Reproductive biology of invertebrates; vol. 9, pt. AJohn Wiley and Sons Ltd, UK (1999).

  • 16.

    National Park Service Southeast Alaska Inventory and Monitoring Network. https://irma.nps.gov/DataStore/Reference/Profile/2258347 (accessed 11 February 2020).

  • 17.

    Cheng, L. et al. Record-setting ocean warmth continued in 2019. Adv. Atmos. Sci. 37, 137–142 (2020).

    Article 

    Google Scholar 

  • 18.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Cairns, S. D. & Bayer, F. M. A review of the genus Primnoa (Octocorallia: Gorgonacea: Primnoidae), with the description of two new species. Bull. Mar. Sci. 77, 225–256 (2005).

    Google Scholar 

  • 20.

    Taylor, M. I., Cairns, S. D., Agnew, J. A. & Rogers, A. D. A revision of the genus Thouarella Gray, 1870 (Octocorallia, Primnoidae) including an illustrated dichotomous key, a new species description, and comments on Plumarella Gray, 1870 and Dasystenella, Versluys, 1906. Zootaxa 3602, 1–105 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Walsh, J. E. et al. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. 99, S39–S43 (2018).

    Article 

    Google Scholar 

  • 22.

    Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Leuzinger, S., Willis, B. L. & Anthony, K. R. Energy allocation in a reef coral under varying resource availability. Mar. Biol. 159, 177–186 (2012).

    Article 

    Google Scholar 

  • 24.

    Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elem. Sci. Anth. https://doi.org/10.1525/elementa.203 (2017).

    Article 

    Google Scholar 

  • 25.

    Naumann, M. S., Orejas, C. & Ferrier-Pagès, C. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep Sea Res. (2 Top. Stud. Oceanogr.) 99, 36–41 (2014).

  • 26.

    Gori, A. et al. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ https://doi.org/10.7717/peerj.1606 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Weinnig, A. M., Gómez, C. E., Hallaj, A. & Cordes, E. E. Cold-water coral (Lophelia pertusa) response to multiple stressors: High temperature affects recovery from short-term pollution exposure. Sci. Rep. 10, 1–13 (2020).

    Article 

    Google Scholar 

  • 28.

    Thompson, D. M. & Van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. R. Soc. B 276, 2893–2901 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & Van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Liberman, R., Fine, M. & Benayahu, Y. Simulated climate change scenarios impact the reproduction and early life stages of a soft coral. Mar. Environ. Res. 163, 105215 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Gori, A. et al. Reproductive cycle and trophic ecology in deep versus shallow populations of the Mediterranean gorgonian Eunicella singularis (Cap de Creus, northwestern Mediterranean Sea). Coral Reefs 31, 823–837 (2012).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Holstein, D. M., Smith, T. B., Gyory, J. & Paris, C. B. Fertile fathoms: deep reproductive refugia for threatened shallow corals. Sci. Rep. 5, 1–12 (2015).

    Article 

    Google Scholar 

  • 34.

    Feldman, B., Shlesinger, T. & Loya, Y. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea. Coral Reefs 37, 201–214 (2018).

    ADS 
    Article 

    Google Scholar 

  • 35.

    Grinyó, J. et al. Reproduction, energy storage and metabolic requirements in a mesophotic population of the gorgonian Paramuricea macrospina. PLoS ONE 13, e0203308 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    Shlesinger, T., Grinblat, M., Rapuano, H., Amit, T. & Loya, Y. Can mesophotic reefs replenish shallow reefs? Reduced coral reproductive performance casts a doubt. Ecol. 99, 421–437 (2018).

    Article 

    Google Scholar 

  • 37.

    Holstein, D. M., Paris, C. B., Vaz, A. C. & Smith, T. B. Modeling vertical coral connectivity and mesophotic refugia. Coral Reefs 35, 23–37 (2016).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Hartmann, A. C., Marhaver, K. L. & Vermeij, M. J. Corals in healthy populations produce more larvae per unit cover. Conserv. Lett. 11, e12410 (2018).

    Article 

    Google Scholar 

  • 39.

    Gori, A., Linares, C., Rossi, S., Coma, R. & Gili, J. M. Spatial variability in reproductive cycle of the gorgonians Paramuricea clavata and Eunicella singularis (Anthozoa, Octocorallia) in the Western Mediterranean Sea. Mar. Biol. 151, 1571–1584 (2007).

    Article 

    Google Scholar 

  • 40.

    Liberman, R., Shlesinger, T., Loya, Y. & Benayahu, Y. Octocoral sexual reproduction: Temporal disparity between mesophotic and shallow-reef populations. Front. Mar. Sci. 5, 445 (2018).

    Article 

    Google Scholar 

  • 41.

    Tsounis, G., Rossi, S., Aranguren, M., Gili, J. M. & Arntz, W. Effects of spatial variability and colony size on the reproductive output and gonadal development cycle of the Mediterranean red coral (Corallium rubrum L.). Mar. Biol. 148, 513–527 (2006).

    Article 

    Google Scholar 

  • 42.

    Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Johnstone, J., Nash, S., Hernandez, E. & Rahman, M. S. Effects of elevated temperature on gonadal functions, cellular apoptosis, and oxidative stress in Atlantic sea urchin Arbacia punculata. Mar. Environ. Res. 149, 40–49 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Bögner, D. Life under climate change scenarios: Sea urchins’ cellular mechanisms for reproductive success. J. Mar. Sci. Eng. 4, 28 (2016).

    Article 

    Google Scholar 

  • 45.

    Nash, S. & Rahman, M. S. Short-term heat stress impairs testicular functions in the American oyster, Crassostrea virginica: Molecular mechanisms and induction of oxidative stress and apoptosis in spermatogenic cells. Mol. Reprod. Dev. 86, 1444–1458 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 46.

    López-Galindo, L. et al. Reproductive performance of Octopus maya males conditioned by thermal stress. Ecol. Indic. 96, 437–447 (2019).

    Article 

    Google Scholar 

  • 47.

    IPCC, 2019: Summary for Policymakers. In: Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. In press.

  • 48.

    Barrie, J. V. & Conway, K. W. Late Quaternary glaciation and postglacial stratigraphy of the northern Pacific margin of Canada. Quat. Res. 51, 113–123 (1999).

    Article 

    Google Scholar 

  • 49.

    Hartill, É. C., Waller, R. G. & Auster, P. J. Deep coral habitats of Glacier Bay National Park and Preserve, Alaska. PLoS ONE https://doi.org/10.1371/journal.pone.0236945 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Rossin, A. M., Waller, R. G. & Stone, R. P. The effects of in-vitro pH decrease on the gametogenesis of the red tree coral, Primnoa pacifica. PLoS ONE https://doi.org/10.1371/journal.pone.0203976 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    X-ray computed tomography (CT) and ESEM-EDS investigations of unusual subfossilized juniper cones

    At UN climate change conference, trying to “keep 1.5 alive”