in

Camera trap placement for evaluating species richness, abundance, and activity

  • 1.

    Gese E. M. Monitoring of terrestrial carnivore populations. Carnivore Conservation. (2001).

  • 2.

    Oconnell, A. F. et al. (eds) Camera Traps in Animal Ecology: Methods and Analyses (Springer Science & Business Media, 2010).

    Google Scholar 

  • 3.

    Tobler, M. W., Carrillo-Percastegui, S. E., Pitman, R. L., Mares, R. & Powell, G. An evaluation of camera traps for inventorying large-and medium-sized terrestrial rainforest mammals. Anim. Conserv. 11(3), 169–178 (2008).

    Google Scholar 

  • 4.

    MacKenzie D. I., Nichols J. D., Royle J. A., Pollock K. H., Bailey L. A., Hines J. E. Occupancy Modeling and Estimation (2017).

  • 5.

    Carbone, C. et al. The use of photographic rates to estimate densities of tigers and other cryptic mammals. Anim. Conserv. 4(1), 75–79 (2001).

    Google Scholar 

  • 6.

    Rowcliffe, J. M., Field, J., Turvey, S. T. & Carbone, C. Estimating animal density using camera traps without the need for individual recognition. J. Appl. Ecol. 1, 1228–1236 (2008).

    Google Scholar 

  • 7.

    Karanth, K. U. Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models. Biol. Conserv. 71(3), 333–338 (1995).

    Google Scholar 

  • 8.

    Silver, S. C. et al. The use of camera traps for estimating jaguar Panthera onca abundance and density using capture/recapture analysis. Oryx 38(2), 148–154 (2004).

    Google Scholar 

  • 9.

    Jhala, Y., Qureshi, Q. & Gopal, R. Can the abundance of tigers be assessed from their signs?. J. Appl. Ecol. 48(1), 14–24 (2011).

    Google Scholar 

  • 10.

    Sollmann, R. et al. Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture-recapture models for jaguars in central Brazil. Biol. Conserv. 144(3), 1017–1024 (2011).

    Google Scholar 

  • 11.

    Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5(11), 1170–1179 (2014).

    Google Scholar 

  • 12.

    Roy, M. et al. Demystifying the Sundarban tiger: Novel application of conventional population estimation methods in a unique ecosystem. Popul. Ecol. 58(1), 81–89 (2016).

    Google Scholar 

  • 13.

    Howe, E. J., Buckland, S. T., Després-Einspenner, M. L. & Kühl, H. S. Distance sampling with camera traps. Methods Ecol. Evol. 8(11), 1558–1565 (2017).

    Google Scholar 

  • 14.

    Bridges, A. S., Vaughan, M. R. & Klenzendorf, S. Seasonal variation in American black bear Ursus americanus activity patterns: Quantification via remote photography. Wildl. Biol. 10(1), 277–284 (2004).

    Google Scholar 

  • 15.

    Beck, H. & Terborgh, J. Groves versus isolates: How spatial aggregation of Astrocaryum murumuru palms affects seed removal. J. Trop. Ecol. 1, 275–288 (2002).

    Google Scholar 

  • 16.

    Kinnaird, M. F., Sanderson, E. W., O’Brien, T. G., Wibisono, H. T. & Woolmer, G. Deforestation trends in a tropical landscape and implications for endangered large mammals. Conserv. Biol. 17(1), 245–257 (2003).

    Google Scholar 

  • 17.

    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8), 2248–2255 (2002).

    Google Scholar 

  • 18.

    Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52(3), 675–685 (2015).

    Google Scholar 

  • 19.

    O’Brien, T. G., Kinnaird, M. F. & Wibisono, H. T. Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6(2), 131–139 (2003).

    Google Scholar 

  • 20.

    Datta, A., Anand, M. O. & Naniwadekar, R. Empty forests: Large carnivore and prey abundance in Namdapha National Park, north-east India. Biol. Cons. 141(5), 1429–1435 (2008).

    Google Scholar 

  • 21.

    Weckel, M., Giuliano, W. & Silver, S. Jaguar (Panthera onca) feeding ecology: Distribution of predator and prey through time and space. J. Zool. 270(1), 25–30 (2006).

    Google Scholar 

  • 22.

    Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Spatio-temporal partitioning among large carnivores in relation to major prey species in Western Ghats. J. Zool. 287(4), 269–275 (2012).

    Google Scholar 

  • 23.

    Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Role of body size in activity budgets of mammals in the Western Ghats of India. J. Trop. Ecol. 32, 315–323 (2015).

    Google Scholar 

  • 24.

    Edwards, S. et al. Making the most of by-catch data: Assessing the feasibility of utilising non-target camera trap data for occupancy modelling of a large felid. Afr. J. Ecol. 56(4), 885–894 (2018).

    Google Scholar 

  • 25.

    Harmsen, B. J., Foster, R. J., Silver, S., Ostro, L. & Doncaster, C. P. Differential use of trails by forest mammals and the implications for camera-trap studies: A case study from Belize. Biotropica 42(1), 126–133 (2010).

    Google Scholar 

  • 26.

    Di Bitetti M. S., Paviolo A. J. & de Angelo C. D. Camera Trap Photographic Rates on Roads vs. Off Roads: Location Does Matter, Vol. 21, 37–46 (2014).

  • 27.

    Blake, J. G. & Mosquera, D. Camera trapping on and off trails in lowland forest of eastern Ecuador: Does location matter?. Mastozool. Neotrop. 21(1), 17–26 (2014).

    Google Scholar 

  • 28.

    Cusack, J. J. et al. Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS ONE 10(5), e0126373 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Kolowski, J. M. & Forrester, T. D. Camera trap placement and the potential for bias due to trails and other features. PLoS ONE 12(10), e0186679 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Srbek-Araujo, A. C. & Chiarello, A. G. Influence of camera-trap sampling design on mammal species capture rates and community structures in southeastern Brazil. Biota. Neotrop. 13(2), 51–62 (2013).

    Google Scholar 

  • 31.

    Wearn, O. R., Rowcliffe, J. M., Carbone, C., Bernard, H. & Ewers, R. M. Assessing the status of wild felids in a highly-disturbed commercial forest reserve in Borneo and the implications for camera trap survey design. PLoS ONE 8(11), e77598 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Sadhu, A. et al. Demography of a small, isolated tiger population in a semi-arid region of western India. BMC Zool. 2(1), 1–13 (2017).

    Google Scholar 

  • 33.

    Sunquist, M. What is a tiger? Ecology and behavior. In Tigers of the World 19–33 (William Andrew Publishing, 2010).

    Google Scholar 

  • 34.

    Gotelli, N. J. & Colwell, R. K. Estimating species richness. Biol. Divers. Front. Meas. Assess. 12, 39–54 (2011).

    Google Scholar 

  • 35.

    Colwell, R. K., Mao, C. X. & Chang, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85(10), 2717–2727 (2004).

    Google Scholar 

  • 36.

    Rovero, F. & Marshall, A. R. Camera trapping photographic rate as an index of density in forest ungulates. J. Appl. Ecol. 46(5), 1011–1017 (2009).

    Google Scholar 

  • 37.

    Jhala, Y. V., Qureshi, Q., Nayak, A. K. Status of tigers, copredators and prey in India, 2018. ISBN No. 81-85496-50-1 https://wii.gov.in/tiger_reports (National Tiger Conservation Authority, Government of India and Wildlife Institute of India, 2020).

  • 38.

    Nichols, J. D. et al. Multi-scale occupancy estimation and modelling using multiple detection methods. J. Appl. Ecol. 45(5), 1321–1329 (2008).

    Google Scholar 

  • 39.

    Hines J. E. PRESENCE 3.1 Software to estimate patch occupancy and related parameters. http://www.mbr-pwrc.usgs.gov/software/presence.html. (2006).

  • 40.

    Meredith, M., & Ridout, M. Overview of the overlap package. R. Project. 1–9 (2014).

  • 41.

    Rowcliffe M, Rowcliffe M. M. Package ‘activity’. Animal activity statistics R Package Version. 1 (2016).

  • 42.

    Soberón, M. J. & Llorente, B. J. The use of species accumulation functions for the prediction of species richness. Conserv. Biol. 7(3), 480–488 (1993).

    Google Scholar 

  • 43.

    Broadley, K., Burton, A. C., Avgar, T. & Boutin, S. Density-dependent space use affects interpretation of camera trap detection rates. Ecol. Evol. 9(24), 14031–14041 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Bunnell, F. L. & Gillingham, M. P. Foraging behavior: Dynamics of dining out. Bioenerget. Wild herbiv. 1, 53–79 (1985).

    Google Scholar 

  • 45.

    Mishra H. R. The ecology and behaviour of chital (Axis axis) in the Royal Chitwan National Park, Nepal: with comparative studies of hog deer (Axis porcinus), sambar (Cervus unicolor) and barking deer (Muntiacus muntjak) (Doctoral dissertation, University of Edinburgh). 1982.

  • 46.

    Raman, T. S. Factors influencing seasonal and monthly changes in the group size of chital or axis deer in southern India. J. Biosci. 22(2), 203–218 (1997).

    Google Scholar 

  • 47.

    Karanth, K. U. & Sunquist, M. E. Behavioral correlates of predation by tiger, leopard and dhole in Nagarhole National Park. India. J Zool. 250(2), 255–265 (2000).

    Google Scholar 

  • 48.

    Harmsen, B. J., Foster, R. J., Silver, S. C., Ostro, L. E. & Doncaster, C. P. Spatial and temporal interactions of sympatric jaguars (Panthera onca) and pumas (Puma concolor) in a neotropical forest. J. Mammal. 90(3), 612–620 (2009).

    Google Scholar 

  • 49.

    Nichols, J. D., Karanth, K. U. & O’Connell, A. F. Science, conservation, and camera traps. In Camera Traps in Animal Ecology 45–56 (Springer, 2011).

    Google Scholar 


  • Source: Ecology - nature.com

    First tracking of the oceanic spawning migrations of Australasian short-finned eels (Anguilla australis)

    Timber or steel? Study helps builders reduce carbon footprint of truss structures