in

Responses of birds and mammals to long-established wind farms in India

  • 1.

    Malthus, T. An Essay on the Principle of Population (Penguin Classics, 1798).

    Google Scholar 

  • 2.

    Northrup, J. M. & Wittemyer, G. Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol. Lett. 16, 112–125 (2013).

    PubMed 

    Google Scholar 

  • 3.

    Hubbert, M. K. Nuclear energy and the fossil fuel. In Drilling and Production Practice. 1–57 (Shell Developmental Company, American Petroleum Institute, Houston, 1956).

    Google Scholar 

  • 4.

    Höök, M., Sivertsson, A. & Aleklett, K. Validity of the fossil fuel production outlooks in the IPCC Emission Scenarios. Nat. Resour. Res. 19, 63–81 (2010).

    Google Scholar 

  • 5.

    Höök, M. & Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 52, 797–809 (2013).

    Google Scholar 

  • 6.

    Abbasi, S. A. & Abbasi, N. The likely adverse environmental impacts of renewable energy sources. Appl. Energy. 65, 121–144 (2000).

    Google Scholar 

  • 7.

    Vöhringer, M. Renewable energy and sustainable development: An impact assessment of micro and mini hydel projects in Gilgit-Baltistan, Pakistan. https://doi.org/10.17169/refubium-22914 (2010).

  • 8.

    Höök, M., Li, J., Johansson, K. & Snowden, S. Growth rates of global energy systems and future outlooks. Nat. Resour. Res. 21, 23–41 (2012).

    Google Scholar 

  • 9.

    Rotty, R. M. Growth in global energy demand and contribution of alternative supply systems. Energy 4, 881–890 (1979).

    Google Scholar 

  • 10.

    Aung, T. S., Overland, I. & Vakulchuk, R. Environmental performance of foreign firms: Chinese and Japanese firms in Myanmar. J. Clean. Prod. 312, 127701 (2021).

    Google Scholar 

  • 11.

    Lu, M. S., Chang, C. L., Lee, W. J. & Wang, L. Combining the wind power generation system with energy storage equipment. IEEE Trans. Ind. Appl. 45, 2109–2115 (2009).

    Google Scholar 

  • 12.

    Morinha, F. et al. Differential mortality of birds killed at wind farms in Northern Portugal. Bird Study 61, 255–259 (2014).

    Google Scholar 

  • 13.

    Arnett, E. B. & May, R. F. Mitigating wind energy impacts on wildlife: Approaches for multiple taxa. Hum.–Wild. Interact. 10, 5 (2016).

    Google Scholar 

  • 14.

    Powlesland, R. G. Impacts of wind farms on birds: A review. Sci. Conserv. 289, 1–53 (2009).

    Google Scholar 

  • 15.

    Marques, A. T. et al. Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).

    Google Scholar 

  • 16.

    Wellig, S. D. et al. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed. PLoS ONE 13, e0192493. https://doi.org/10.1371/journal.pone.0192493 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Everaert, J. & Eric, W. M. S. Impact of wind turbines on birds in Zeebrugge (Belgium). Biodivers. Conserv. 16, 3345–3359 (2007).

    Google Scholar 

  • 18.

    Barrios, L. & Rodriguez, A. Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. J. Appl. Ecol. 41, 72–81 (2004).

    Google Scholar 

  • 19.

    Barrios, L. & Rodriguez, A. Spatiotemporal patterns of bird mortality at two wind farms of Southern Spain. in Birds and wind farms: Risk Assessment and Mitigation (eds De Lucas, M. et al.) 229–239 (2007).

  • 20.

    Meek, E. R., Ribbands, J. B., Christer, W. B., Davy, P. R. & Higginson, I. The effects of aero-generators onmoorland bird populations in the Orkney Islands, Scotland. Bird Study 40, 140–143 (1993).

    Google Scholar 

  • 21.

    Smallwood, K. S. & Thelander, C. Developing methods to reduce bird mortality in the Altamont Pass Wind Resource Area. Final report to the California Energy Commission. Public Interest Energy Research–Environmental Area, Contract (2004).

  • 22.

    Smallwood, K. S. & Thelander, C. Bird mortality in the Altamont Pass wind resource area, California. J. Wildl. Manag. 72, 215–223 (2008).

    Google Scholar 

  • 23.

    Drewitt, A. L. & Langston, R. H. Collision effects of wind-power generators and other obstacles on birds. Ann. N. Y. Acad. Sci. 1134, 233–266 (2008).

    ADS 
    PubMed 

    Google Scholar 

  • 24.

    IWTMA—Indian Wind Turbine Manufacturers Association: INDIA—WIND POWER State wise Month wise Wind Power Installed Capacity 2019–2020. Accessed 7 May 2021. http://www.indianwindpower.com/wind-energy-in-india.php#tab1 (2020).

  • 25.

    Smith, K. T., Taylor, K. L., Albeke, S. E. & Beck, J. L. Pronghorn winter resource selection before and after wind energy development in South-Central Wyoming. Rangel. Ecol. Manag. 73(2), 227–233 (2020).

    Google Scholar 

  • 26.

    Klich, D., Łopucki, R., Ścibior, A., Gołębiowska, D. & Wojciechowska, M. Roe deer stress response to a wind farms: methodological and practical implications. Ecol. Indic. 117, 106658 (2020).

    Google Scholar 

  • 27.

    Flydal, K., Eftestøl, S., Reimers, E. & Colman, J. E. Effects of wind turbines on area use and behaviour of semi-domestic reindeer in enclosures. Rangifer. 24(2), 55–66 (2004).

    Google Scholar 

  • 28.

    Rabin, L. A., Coss, R. G. & Owings, D. H. The effects of wind turbines on antipredator behavior in California ground squirrels (Spermophilus beecheyi). Biol. Conserv. 131(3), 410–420 (2006).

    Google Scholar 

  • 29.

    Łopucki, R. & Perzanowski, K. Effects of wind turbines on spatial distribution of the European hamster. Ecol. Indic. 84, 433–436 (2018).

    Google Scholar 

  • 30.

    Kumar, S. R., Ali, A. & Arun, P. R. Impact of wind turbines on birds: A case study from Gujarat, India. Sci. J. Environ. Sci. 228, 1–12 (2012).

    Google Scholar 

  • 31.

    Kumar, S. R., Ali, A. M. S. & Arun, P. R. Bat mortality due to collision with wind turbines in Kutch District, Gujarat, India. J. Threat. Taxa. 5(13), 4822–4824 (2013).

    Google Scholar 

  • 32.

    Kumar, V., Kumar, P. & Singh, J. An introduction to contaminants in agriculture and environment. In Contaminants in Agriculture and Environment: Health Risks and Remediation (eds. Kumar, V. et al.) 1–8 (Afro Environment India, Haridwar, India, 2019).

    Google Scholar 

  • 33.

    Pande, S. et al. CEPF Western Ghats Special Series: Avian collision threat assessment at Bhambarwadi Wind farm Plateau in northern Western Ghats. India. J. Threat. Taxa. 5(1), 3504–3515 (2013).

    Google Scholar 

  • 34.

    Narwade, S. et al. Mass mortality of wildlife due to hailstorms in Maharashtra, India. Bird Populations. 13, 28–35 (2014).

    Google Scholar 

  • 35.

    Champion, H. G. & Seth, S. K. A Revised Survey of the Forest Types of India (Manager of Publications, 1968).

    Google Scholar 

  • 36.

    Erickson, W. P. et al. Avian collisions with wind turbines: a summary of existing studies and comparisons to other sources of avian collision mortality in the United States. Western EcoSystems Technology, Inc., Cheyenne, WY (United States); RESOLVE, Inc., Washington, DC (United States). Accessed 20 Feb 2021. https://www.osti.gov/servlets/purl/822418/ (2001).

  • 37.

    Shoenfeld, P. Suggestions regarding avian mortality extrapolation. Prepared for the Mountaineer Wind Energy Center Technical Review Committee (2004).

  • 38.

    Buckland, S. T. et al. Introduction to Distance Sampling (Oxford University Press, 2001).

    Google Scholar 

  • 39.

    Bibby, C. J., Burgess, N. D. & Hill, D. A. Bird Census Techniques (Academic Press, 1992).

    Google Scholar 

  • 40.

    Cottam, G. & Curtis, J. T. The use of distance measures in phytosociological sampling. Ecology 37, 451–460 (1956).

    Google Scholar 

  • 41.

    Erickson, W. P., Jeffrey, J., Kronner, K. & Bay, K. Stateline wind project wildlife monitoring annual report, results for the period July 2001–December 2002. Technical report submitted to FPL Energy, the Oregon Office of Energy, and the Stateline Technical Advisory Committee (2003).

  • 42.

    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).

    Google Scholar 

  • 43.

    McCune, B., Grace, J. B. & Urban, D. L. Analysis of Ecological Communities Vol. 28 (MjM Software Design, 2002).

    Google Scholar 

  • 44.

    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. Ecol. 18, 117–143 (1993).

    Google Scholar 

  • 45.

    Baskaran, N., Desai, A. A. & Udhayan, A. Population distribution and conservation of the four-horned antelope (Tetracerus quadricornis) in the tropical forest of Southern India. J. Sci. Trans. Environ. Technol. 2, 139–144 (2009).

    Google Scholar 

  • 46.

    Isvaran, K. Intraspecific variation in group size in the blackbuck antelope: The roles of habitat structure and forage at different spatial scales. Oecologia 154(2), 435–444 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • 47.

    Šálek, M. et al. Population densities and habitat use of the golden jackal (Canis aureus) in farmlands across the Balkan Peninsula. Eur. J. Wildl. Res. 60(2), 193–200 (2014).

    Google Scholar 

  • 48.

    Mukherjee, S., Goyal, S. P., Johnsingh, A. J. T. & Pitman, M. L. The importance of rodents in the diet of jungle cat (Felis chaus), caracal (Caracal caracal) and golden jackal (Canis aureus) in Sariska Tiger Reserve, Rajasthan, India. J. Zool. 262(4), 405–411 (2004).

    Google Scholar 

  • 49.

    Majumder, A., Sankar, K., Qureshi, Q. & Basu, S. Food habits and temporal activity patterns of the Golden Jackal Canis aureus and the Jungle Cat Felis chaus in Pench Tiger Reserve, Madhya Pradesh. J. Threat. Taxa. 3(11), 2221–2225 (2011).

    Google Scholar 

  • 50.

    Gaikwad, M. C. & Narwade, S. S. The status of Chinkara Gazella bennettii (Mammalia: Cetartiodactyla: Bovidae) at Mayureshwar Wildlife Sanctuary, Supe, Baramati, Pune and a note on its current distribution in the southwestern region of the Deccan Plateau of Maharashtra, India. J. Threat. Taxa. 8(3), 8590–8595 (2016).

    Google Scholar 

  • 51.

    Kumar, D. et al. Ecological determinants of occupancy and abundance of chinkara (Gazella bennettii) in Yadahalli Wildlife Sanctuary, Karnataka, India. Curr. Sci. 118(2), 264–270 (2020).

    Google Scholar 

  • 52.

    Anoop, V., Arun, P. R. & Jayapal, R. Do black-naped hares Lepus nigricollis (Mammalia: Lagomorpha: Leporidae) have synanthropic association with wind farms?. J. Threat. Taxa. 10(7), 11925–11927 (2018).

    Google Scholar 

  • 53.

    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).

    Google Scholar 

  • 54.

    MacKenzie, D. I. et al. Occupancy Modelling and Estimation (Academic Press, 2006).

    Google Scholar 

  • 55.

    Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60, 255–265 (1973).

    MathSciNet 
    MATH 

    Google Scholar 

  • 56.

    Burnham, K. P. & Anderson, D. R. in Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn (Springer-Verlag, New York, 2002).

    MATH 

    Google Scholar 

  • 57.

    Kingsley, A. & Whittam, B. Potential Impacts of Wind Turbines on Birds at North Cape, Prince Edward Island (Bird Studies Canada, 2001).

    Google Scholar 

  • 58.

    Winkelman, J. E. Vogels en het Windpark nabij Urk (NOP): Aanvaringsslachtoffers en Verstoring van Pleisterende Eenden, Ganzen en Zwanen. RIN-report 89/15. Arnhem. (1989).

  • 59.

    Arun, P. R., Jayapal, R. & Anoop, V. Impact of Hara wind power project of CLP wind farms (India) ltd. On wildlife including migratory birds and raptors at Harpanahalli, Davangere, Karnataka. Final report Submitted to CLP Wind farms (India) Pvt. Ltd. SACON Report. 145 (2015).

  • 60.

    SGS Environment – Haverigg wind farm ornithological monitoring programme. Report to Windcluster Ltd. (1994).

  • 61.

    Tyler, S. J. Bird strike study at Bryn Titli wind farm, Rhayader. Report to National Wind Power Ltd (1995).

  • 62.

    Petterson, J. & Stalin, T. Influence of offshore windmill on migratory birds in southeast coast of Sweden. Report to GE Wind Energy. Piorkowski (2003).

  • 63.

    Grünkorn T., Diederichs A., Stahl B., Pöszig D. & Nehls G. Entwicklung einer Methode zur Abschätzung desKollisionsrisikos von Vögeln an Windenergie-anlagen. Bioconsult SH, Hockensbüll, Germany. Accessed 2 Feb 2021. http://www.umweltdaten.landsh.de/nuis/upool/gesamt/wea/voegel_wea.pdf (2005).

  • 64.

    Morrison, M. L. Avian Risk and Fatality Protocol (National Renewable Energy Lab., 1998).

    Google Scholar 

  • 65.

    Anderson, R. et al. Avian Monitoring and Risk Assessment at the San Gorgonio Wind Resource Area (National Renewable Energy Lab. (NREL), 2005).

    Google Scholar 

  • 66.

    Hunt, G. & Hunt, T. The trend of golden eagle territory occupancy in the vicinity of the Altamont Pass Wind Resource Area: 2005 survey. Unpublished report of the California Energy Commission. Accessed 2 Feb 2021. www.energy.ca.gov/2006publications/CEC-500-2006-056/CEC-500-2006-056.pdf (2006).

  • 67.

    Brown, M. J., Linton, E. & Rees, E. C. Causes of mortality among wild swans in Britain. Wildfowl. 43, 70–79 (1992).

    Google Scholar 

  • 68.

    Larsen, J. K. & Clausen, P. Potential wind park impacts on whooper swans in winter: The risk of collision. Waterbirds. 25, 327–330 (2002).

    Google Scholar 

  • 69.

    Drewitt, A. L. & Langston, R. H. Assessing the impacts of wind farms on birds. Ibis 148, 29–42 (2006).

    Google Scholar 

  • 70.

    Stewart, G. B., Pullin, A. S. & Coles, C. F. Poor evidence-base for assessment of wind farm impacts on birds. Environ. Conserv. 34, 1–11 (2007).

    Google Scholar 

  • 71.

    Kuvlesky, W. P. Jr. et al. Wind energy development and wildlife conservation: Challenges and opportunities. J. Wildl. Manag. 71, 2487–2498 (2007).

    Google Scholar 

  • 72.

    Behr, O. & Helversen. O. V. Gutachten zur Beeinträchtigung im freien Luftraum jagender und ziehender Fledermäuse durch bestehende Windkraftanlagen. Wirkungskontrolle zum Windpark “Roßkopf” (Freiburg i. Br.). Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Zoologie II: 1–42 (2005).

  • 73.

    Behr, O. et al. Gutachten zur Beeinträchtigung im freien Luftraum jagender und ziehender Fledermäuse durch bestehende Windkraftanlagen. Wirkungskontrolle zum Windpark ‘Ittenschwander Horn’ (Freiburg i Br.). Report to Windpark Fröhnd GmbH & Co. KG (2006).

  • 74.

    Brinkmann, R., Schauer-Weisshahn H., & Bontadina F. Untersuchungen zu möglichen betriebsbedingten Auswirkungen von Windkraftanlagen auf Fledermäuse im Regierungsbezirk Freiburg. Report to Regierungspräsidium Freiburg, Referat 56 Naturschutz und Landschaftspflege. Accessed 2 Feb 2021. http://www.rp-freiburg.de/servlet/PB/show/1158478/rpf-windkraft-fledermaeuse.pdf (2006).

  • 75.

    Grunwald, T. & Schäfer, F. Aktivität von Fledermäusen im Rotorbereich von Windenergieanlagen an bestehenden WEA in Südwestdeutschland – Teil 2: Ergebnisse. Nyctalus. 12, 182–198 (2007).

    Google Scholar 

  • 76.

    Bach, P., Niermann, I. & Bach, L. Impact of wind speed on the activity of bats-at the coast and inland. Accessed 2 Feb 2021. https://tethys.pnnl.gov/sites/default/files/publications/Bachetal2011.pdf (2011).

  • 77.

    Bach, P., Bach, L., Ekschmitt, K., Frey, K. & Gerhardt, U. Bat fatalities at different wind facilities in Northwest Germany. Accessed 2 Feb 2021. https://tethys.pnnl.gov/sites/default/files/publications/Bach-Bat-fatalities-Poster-2013.pdf (2013).

  • 78.

    Cryan, P. M. & Brown, A. C. Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biol. Conserv. 139, 1–11 (2007).

    Google Scholar 

  • 79.

    Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. B 284, 20170829. https://doi.org/10.1098/rspb.2017.0829 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Kumar S. R. Impacts of wind farm on avifauna of Samakhiali region, Kutch, Gujarat, PhD thesis submitted to Bharathiyar University, Coimbatore (2017).

  • 81.

    De Lucas, M., Janss, G. F., Whitfield, D. P. & Ferrer, M. Collision fatality of raptors in wind farms does not depend on raptor abundance. J. Appl. Ecol. 45, 1695–1703 (2008).

    Google Scholar 

  • 82.

    Leddy, K. L., Higgins, K. F. & Naugle, D. E. Effects of wind turbines on upland nesting birds in Conservation Reserve Program grasslands. Wilson. Bull. 111, 100–104 (1999).

    Google Scholar 

  • 83.

    Pearce-Higgins, J. W., Stephen, L., Langston, R. H., Bainbridge, I. P. & Bullman, R. The distribution of breeding birds around upland wind farms. J. Appl. Ecol. 46, 1323–1331 (2009).

    Google Scholar 

  • 84.

    Zimmerling, J., Pomeroy, A., d’Entremont, M. & Francis, C. Canadian estimate of bird mortality due to collisions and direct habitat loss associated with wind turbine developments. Avian Conserv. Ecol. 8, 1–13 (2013).

    Google Scholar 

  • 85.

    Schaller, G. B. The Deer and the Tiger: A Study of Wildlife in India (University Chicago Press, 1967).

    Google Scholar 

  • 86.

    Prasad, N. Home range, dispersal, and movement of blackbuck (Antilope cervicapra) population in relation to seasonal change in Mudmal and environs. PhD thesis submitted to Saurashtra University, Rajkot, India (1981).

  • 87.

    Ranjitsinh, M. K. Indian Blackbuck (Natraj Publishers, 1989).

    Google Scholar 

  • 88.

    Kumara, H. N., Rathnakumar, S., Sasi, R. & Singh, M. Conservation status of wild mammals in Biligiri Rangaswamy Temple wildlife sanctuary, the Western Ghats, India. Curr. Sci. 103, 933–940 (2012).

    Google Scholar 

  • 89.

    Rathore, D. Blackbuck occupancy in Moyar valley, Tamil Nadu. MSc thesis submitted to TERI University, Delhi (2017).

  • 90.

    Arandhara, S., Sathishkumar, S., Gupta, S. & Baskaran, N. Influence of invasive Prosopis juliflora on the distribution and ecology of native blackbuck in protected areas of Tamil Nadu, India. Eur. J. Wildl. Res. 67, 1–16 (2021).

    Google Scholar 

  • 91.

    Prater, S. H. The Book of Indian Animals (Oxford University Press, 1971).

    Google Scholar 

  • 92.

    Roberts, T. J. The Mammals of Pakistan (Oxford University Press, 1997).

    Google Scholar 

  • 93.

    Rahmani, A. R. Distribution of the Indian gazelle or chinkara Gazella bennetti (Sykes) in India. Mammalia 54, 605–620 (1990).

    Google Scholar 

  • 94.

    Kumar, D. et al. Ecological determinants of occupancy and abundance of chinkara (Gazella bennettii) in Yadahalli Wildlife Sanctuary, Karnataka, India. Curr. Sci. 118, 264 (2020).

    Google Scholar 

  • 95.

    Gubbi, S., Seshadri, S. & Kumara, V. Counting the unmarked: Estimating animal population using count data. Electron. J. Appl. Stat. Anal. 12, 604–618 (2019).

    Google Scholar 

  • 96.

    Clutton-Brock, J., Corbet, G. B. & Hills, M. Review of the family Canidae, with a classification by numerical methods. Bull. Br. Mus. Nat. Hist. Zool. 29, 117–199 (1976).

    Google Scholar 

  • 97.

    Nowell, K. & Jackson, P. Wild Cats: Status Survey and Conservation Action Plan (IUCN, 1996).

    Google Scholar 

  • 98.

    Krishna, Y. C., Krishnaswamy, J. & Kumar, N. S. Habitat factors affecting site occupancy and relative abundance of four-horned antelope. J. Zool. 276, 63–70 (2008).

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Anuradha Annaswamy on building smart infrastructures

    Calculating dissolved marine oxygen values based on an enhanced Benthic Foraminifera Oxygen Index