in

Parent–offspring conflict and its outcome under uni-and biparental care

  • 1.

    Trivers, R. L. Parent-offspring conflict. Am. Zool. 14, 249–264 (1974).

    Google Scholar 

  • 2.

    Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) 136–179 (Routledge, 1972).

    Google Scholar 

  • 3.

    Godfray, H. C. J. Evolutionary theory of parent–offspring conflict. Nature 376, 133–138 (1995).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 4.

    Parker, G. A. & Macnair, M. R. Models of parent-offspring conflict. IV. Suppression: Evolutionary retaliation by the parent. Anim. Behav. 27, 1210–1235 (1979).

    Google Scholar 

  • 5.

    Wells, J. C. K. Parent-offspring conflict theory, signaling of need, and weight gain in early life. Q. Rev. Biol. 78, 169–202 (2003).

    PubMed 

    Google Scholar 

  • 6.

    Godfray, H. C. J. & Johnstone, R. A. Begging and bleating: The evolution of parent-offspring signalling. Philos. Trans. R. Soc. B 355, 1581–1591 (2000).

    CAS 

    Google Scholar 

  • 7.

    Mock, D. W. & Parker, G. A. Siblicide, family confilct and the evolutionary limits of selfishness. Anim. Behav. 56, 1–10 (1997).

    Google Scholar 

  • 8.

    Wilson, A. J. et al. Selection on mothers and offspring: Whose phenotype is it and does it matter?. Evolution 59, 451–463 (2005).

    PubMed 

    Google Scholar 

  • 9.

    Janzen, F. J. & Warner, D. A. Parent-offspring conflict and selection on egg size in turtles. J. Evol. Biol. 22, 2222–2230 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Hinde, C. A., Johnstone, R. A. & Kilner, R. M. Parent-offspring conflict and coadaptation. Science 327, 1373–1376 (2010).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 11.

    Kölliker, M. et al. Parent-offspring conflict and the genetic trade-offs shaping parental investment. Nat. Commun. 6, 1–8 (2015).

    Google Scholar 

  • 12.

    Kilner, R. M. & Hinde, C. A. Parent–offspring conflict. In The Evolution of Parental Care (eds Royle, N. J. et al.) 119–132 (Oxford University Press, 2012).

    Google Scholar 

  • 13.

    Mas, F. & Kölliker, M. Maternal care and offspring begging in social insects: Chemical signalling, hormonal regulation and evolution. Anim. Behav. 76, 1121–1131 (2008).

    Google Scholar 

  • 14.

    Hale, R. E. & Travis, J. The evolution of developmental dependence, or ‘Why do my kids need me so much?’. Evol. Ecol. Res. 14, 207–221 (2012).

    Google Scholar 

  • 15.

    Gomendio, M. Suckling behaviour and fertility in rhesus macaques (Macaca multatta). J. Zool. 217, 449–467 (1989).

    Google Scholar 

  • 16.

    Hamada, Y., Murata, T., Watanabe, S. & Kanda, I. Inhibitory effect of prolactin on ovulation in the in vitro perfused rabbit ovary. Nature 285, 161–163 (1980).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 17.

    Short, R. V. Breast feeding. Sci. Am. 250, 35–41 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Traynor, K. S., Le Conte, Y. & Page, R. E. Age matters: Pheromone profiles of larvae differentially influence foraging behaviour in the honeybee, Apis mellifera. Anim. Behav. 99, 1–8 (2015).

    Google Scholar 

  • 19.

    Maisonnasse, A., Lenoir, J. C., Beslay, D., Crauser, D. & Le Conte, Y. E-β-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS ONE 5, 1–7 (2010).

    Google Scholar 

  • 20.

    Capodeanu-Nägler, A., De La Torre, E. R., Eggert, A. K., Sakaluk, S. K. & Steiger, S. Divergent coevolutionary trajectories in parent–ofspring interactions and discrimination against brood parasites revealed by interspecifc cross-fostering. R. Soc. Open Sci. 5, 180819 (2018).

    Google Scholar 

  • 21.

    Smiseth, P. T. & Moore, A. J. Behavioral dynamics between caring males and females in a beetle with facultative biparental care. Behav. Ecol. 15, 621–628 (2004).

    Google Scholar 

  • 22.

    Eggert, A. K. Alternative male mate-finding tactics in burying beetles. Behav. Ecol. 3, 243–254 (1992).

    Google Scholar 

  • 23.

    Pukowski, E. Ökologische untersuchungen an Necrophorus F. Z. Morphol. Ökol. Tiere 27, 518–586 (1933).

    Google Scholar 

  • 24.

    Eggert, A.-K. & Müller, J. K. Biparental care and social evolution in burying beetles: Lessons from the larder. Soc. Behav. Insects Arachn. (1997).

  • 25.

    Royle, N. J., Hopwood, P. E. & Head, M. L. Burying beetles. Curr. Biol. 23, R907 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Scott, M. P. The ecology and behavior of burying beetles. Annu. Rev. Entomol. 43, 595–618 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Arce, A. N., Johnston, P. R., Smiseth, P. T. & Rozen, D. E. Mechanisms and fitness effects of antibacterial defences in a carrion beetle. J. Evol. Biol. 25, 930–937 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Cotter, S. C. & Kilner, R. M. Sexual division of antibacterial resource defence in breeding burying beetles, Nicrophorus vespilloides. J. Anim. Ecol. 79, 35–43 (2010).

    PubMed 

    Google Scholar 

  • 29.

    Vogel, H. et al. The digestive and defensive basis of carcass utilization by the burying beetle and its microbiota. Nat. Commun. 6, 1–10 (2017).

    Google Scholar 

  • 30.

    Shukla, S. P. et al. Microbiome-assisted carrion preservation aids larval development in a burying beetle. Proc. Natl. Acad. Sci. USA. 115, 11274–11279 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Duarte, A., Welch, M., Swannack, C., Wagner, J. & Kilner, R. M. Strategies for managing rival bacterial communities: Lessons from burying beetles. J. Anim. Ecol. 87, 414–427 (2018).

    PubMed 

    Google Scholar 

  • 32.

    Miller, C. J., Bates, S. T., Gielda, L. M. & CurtisCreighton, J. Examining transmission of gut bacteria to preserved carcass via anal secretions in Nicrophorus defodiens. PLoS ONE 14, 1–13 (2019).

    Google Scholar 

  • 33.

    Suzuki, S. Suppression of fungal development on carcasses the burying beetle Nicrophorus quadripunctatus (Coleoptera: Silphidae). Entomol. Sci. 4, 403–405 (2001).

    Google Scholar 

  • 34.

    Eggert, A. K., Reinking, M. & Müller, J. K. Parental care improves offspring survival and growth in burying beetles. Anim. Behav. 55, 97–107 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Trumbo, S. T. Feeding upon and preserving a carcass: The function of prehatch parental care in a burying beetle. Anim. Behav. 130, 241–249 (2017).

    Google Scholar 

  • 36.

    Smiseth, P. T., Darwell, C. T. & Moore, A. J. Partial begging: An empirical model for the early evolution of offspring signalling. Proc. R. Soc. B Biol. Sci. 270, 1773–1777 (2003).

    Google Scholar 

  • 37.

    Rauter, C. M. & Moore, A. J. Do honest signalling models of offspring solicitation apply to insects?. Proc. R. Soc. B Biol. Sci. 266, 1691–1696 (1999).

    Google Scholar 

  • 38.

    Royle, N. J., Russell, A. F. & Wilson, A. J. The evolution of flexible parenting. Science 345, 776–781 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar 

  • 39.

    Capodeanu-Nägler, A., Eggert, A. K., Vogel, H., Sakaluk, S. K. & Steiger, S. Species divergence in offspring begging and parental provisioning is linked to nutritional dependency. Behav. Ecol. 29, 42–50 (2018).

    Google Scholar 

  • 40.

    Müller, J. K. Replacement of a lost clutch: A strategy for optimal resource utilization in Necrophorus vespilloides (Coleoptera: Silphidae). Ethology 76, 74–80 (1987).

    Google Scholar 

  • 41.

    Müller, J. K., Braunisch, V., Hwang, W. & Eggert, A. K. Alternative tactics and individual reproductive success in natural associations of the burying beetle, Nicrophorus vespilloides. Behav. Ecol. 18, 196–203 (2007).

    Google Scholar 

  • 42.

    Müller, J. K. & Eggert, A. K. Time-dependent shifts between infanticidal and parental behavior in female burying beetles a mechanism of indirect mother-offspring recognition. Behav. Ecol. Sociobiol. 27, 11–16 (1990).

    Google Scholar 

  • 43.

    Smiseth, P. T. & Parker, H. J. Is there a cost to larval begging in the burying beetle Nicrophorus vespilloides?. Behav. Ecol. 19, 1111–1115 (2008).

    Google Scholar 

  • 44.

    Steiger, S. Bigger mothers are better mothers: Disentangling size-related prenatal and postnatal maternal effects. Proc. R. Soc. B. 280, 1225 (2013).

    Google Scholar 

  • 45.

    Keppner, E. M. et al. Beyond cuticular hydrocarbons: Chemically mediated mate recognition in the subsocial burying beetle Nicrophorus vespilloides. J. Chem. Ecol. 43, 84–93 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Schrader, M. & Galanek, J. Stridulation is unimportant for effective parental care in two species of burying beetle. Ecol. Entomol. 47, 1–18 (2021).

    Google Scholar 

  • 47.

    Curtis Creighton, J., Heflin, N. D. & Belk, M. C. Cost of reproduction, resource quality, and terminal investment in a burying beetle. Am. Nat. 174, 673–684 (2009).

    PubMed 

    Google Scholar 

  • 48.

    Engel, K. C. et al. A hormone-related female anti-aphrodisiac signals temporary infertility and causes sexual abstinence to synchronize parental care. Nat. Commun. 7, 1–10 (2016).

    Google Scholar 

  • 49.

    Trumbo, S. T. Reproductive benefits of infanticide in a biparental burying beetle Nicrophorus orbicollis. Behav. Ecol. Sociobiol. 27, 269–273 (1990).

    Google Scholar 

  • 50.

    Skinner, S. W. Clutch size as an optimal foraging problem for insects. Behav. Ecol. Sociobiol. 17, 231–238 (1985).

    Google Scholar 

  • 51.

    Lack, D. The significance of clutch-size. Ibis 89, 302–352 (1946).

    Google Scholar 

  • 52.

    Lyon, B. E. Optimal clutch size and conspecific brood parasitism. Nature 392, 380–383 (1998).

    CAS 
    ADS 

    Google Scholar 

  • 53.

    Parker, G. A. & Courtney, S. P. Models of clutch size in insect oviposition. Theor. Popul. Biol. 26, 27–48 (1984).

    MATH 

    Google Scholar 

  • 54.

    Godfray, H. C. J., Partridge, L. & Harvey, P. H. Clutch size. Annu. Rev. Ecol. Syst. 22, 409–429 (1991).

    Google Scholar 

  • 55.

    Hardy, I. C. W., Griffiths, N. T. & Godfray, H. C. J. Clutch size in a parasitoid wasp: a manipulation experiment. J. Anim. Ecol. 61, 121–129 (1992).

    Google Scholar 

  • 56.

    Zaviezo, T. & Mills, N. Factors influencing the evolution of clutch size in a gregarious insect parasitoid. J. Anim. Ecol. 69, 1047–1057 (2000).

    Google Scholar 

  • 57.

    Bezemer, T. M. & Mills, N. J. Clutch size decisions of a gregarious parasitoid under laboratory and field conditions. Anim. Behav. 66, 1119–1128 (2003).

    Google Scholar 

  • 58.

    Parker, G. A., Royle, N. J. & Hartley, I. R. Intrafamilial conflict and parental investment: a synthesis. Philos. Trans. R. Soc. B 357, 295–307 (2002).

    Google Scholar 

  • 59.

    Godfray, H. C. J. & Parker, G. A. Clutch size, fecundity and parent-offspring conflict. Philos. Trans. R. Soc. Lond. B 332, 67–79 (1991).

    ADS 

    Google Scholar 

  • 60.

    Alexander, R. D. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5, 325–383 (1974).

    Google Scholar 

  • 61.

    Kilner, R. M. & Hinde, C. A. Information warfare and parent-offspring conflict. Adv. Stud. Behav. 38, 283–336 (2008).

    Google Scholar 

  • 62.

    Kilner, R. M. & Johnstone, R. A. Begging the question: are offspring solicitation behaviours signals of need?. Trends Ecol. Evol. 12, 11–15 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Godfray, H. C. J. Signalling of need by offspring to their parents. Lett. Nat. 352, 328–330 (1991).

    Google Scholar 

  • 64.

    Johnstone, R. A. Begging signals and parent-offspring conflict: Do parents always win?. Proc. R. Soc. B. 263, 1677–1681 (1996).

    ADS 

    Google Scholar 

  • 65.

    Parker, G. A., Royle, N. J. & Hartley, I. R. Begging scrambles with unequal chicks: Interactions between need and competitive ability. Ecol. Lett. 5, 206–215 (2002).

    Google Scholar 

  • 66.

    Keller, L. & Nonacs, P. The role of queen pheromones in social insects: Queen control or queen signal?. Anim. Behav. 45, 787–794 (1993).

    Google Scholar 

  • 67.

    Kocher, S. D. & Grozinger, C. M. Cooperation, conflict, and the evolution of queen pheromones. J. Chem. Ecol. 37, 1263–1275 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Oi, C. A. et al. The origin and evolution of social insect queen pheromones: Novel hypotheses and outstanding problems. BioEssays 37, 808–821 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Smiseth, P. T. & Moore, A. J. Does resource availability affect offspring begging and parental provisioning in a partially begging species?. Anim. Behav. 63, 577–585 (2002).

    Google Scholar 

  • 70.

    Andrews, C. P. & Smiseth, P. T. Differentiating among alternative models for the resolution of parent-offspring conflict. Behav. Ecol. 24, 1185–1191 (2013).

    Google Scholar 

  • 71.

    Steiger, S., Peschke, K., Francke, W. & Müller, J. K. The smell of parents: Breeding status influences cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides. Proc. R. Soc. B Biol. Sci. 274, 2211–2220 (2007).

    CAS 

    Google Scholar 

  • 72.

    Steiger, S., Franz, R., Eggert, A. K. & Müller, J. K. The Coolidge effect, individual recognition and selection for distinctive cuticular signatures in a burying beetle. Proc. R. Soc. B Biol. Sci. 275, 1831–1838 (2008).

    Google Scholar 

  • 73.

    Chemnitz, J., Jentschke, P. C., Ayasse, M. & Steiger, S. Beyond species recognition: somatic state affects long-distance sex pheromone communication. Proc. R. Soc. B 282, 1–9 (2015).

    CAS 

    Google Scholar 

  • 74.

    Steiger, S. Recognition and family life: Recognition mechanisms in the biparental burying beetle. in Social Recognition in Invertebrates: The Knowns and the Unknowns (eds. Aquiloni, L. & Tricarico, E.) 249–266 (2015).

  • 75.

    Takata, M., Mitaka, Y., Steiger, S. & Mori, N. A parental volatile pheromone triggers offspring begging in a burying beetle. Science 19, 1260–1278 (2019).

    Google Scholar 

  • 76.

    Mäenpää, M. I. & Smiseth, P. T. Resource allocation is determined by both parents and offspring in a burying beetle. J. Evol. Biol. 33(11), 1567–1578 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 77.

    Mattey, S. N., Richardson, J., Ratz, T. & Smiseth, P. T. Effects of offspring and parental inbreeding on parent-offspring communication. Am. Nat. 191, 716–725 (2018).

    PubMed 

    Google Scholar 

  • 78.

    Steiger, S. & Stökl, J. Pheromones regulating reproduction in subsocial beetles: insights with references to eusocial insects. J. Chem. Ecol. 44, 785–795 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Haig, D. Genetic conflict in human pregnancy. Q. Rev. Biol. 68, 495–532 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Paquet, M., Drummond, H. & Smiseth, P. T. Offspring are predisposed to beg more towards females in the burying beetle Nicrophorus vespilloides. Anim. Behav. 141, 195–201 (2018).

    Google Scholar 

  • 81.

    Sakaluk, S. K., Eggert, A.-K. & Müller, J. K. The ‘widow effect’ and its consequences for reproduction in burying beetles, Nicrophorus vespilloides (Coleoptera: Silphidae). Ethology 104, 553–564 (1998).

    Google Scholar 

  • 82.

    De Gasperin, O., Duarte, A., Troscianko, J. & Kilner, R. M. Fitness costs associated with building and maintaining the burying beetle’s carrion nest. Sci. Rep. 6, 1–6 (2016).

    Google Scholar 

  • 83.

    Bartlett, J. Male mating success and paternal care in Nicrophorus vespilloides (Coleoptera: Silphidae). Behav. Ecol. Sociobiol. 23, 297–303 (1988).

    Google Scholar 

  • 84.

    Müller, J. K., Eggert, A. K. & Sakaluk, S. K. Carcass maintenance and biparental brood care in burying beetles: are males redundant?. Ecol. Entomol. 23, 195–200 (1998).

    Google Scholar 

  • 85.

    Smiseth, P. T., Dawson, C., Varley, E. & Moore, A. J. How do caring parents respond to mate loss? Differential response by males and females. Anim. Behav. 69, 551–559 (2005).

    Google Scholar 

  • 86.

    Parker, D. J. et al. Transcriptomes of parents identify parenting strategies and sexual conflict in a subsocial beetle. Nat. Commun. 6, 1–10 (2015).

    CAS 

    Google Scholar 

  • 87.

    Keppner, E. M., Ayasse, M. & Steiger, S. Contribution of males to brood care can compensate for their food consumption from a shared resource. Ecol. Evol. 10, 3535–3543 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 88.

    Schedwill, P., Paschkewitz, S., Teubner, H. & Steinmetz, N. From the host’ s point of view: Effects of variation in burying beetle brood care and brood size on the interaction with parasitic mites. Plosone 15, 1–14 (2020).

    Google Scholar 

  • 89.

    Pilakouta, N., Hanlon, E. J. H. & Smiseth, P. T. Biparental care is more than the sum of its parts: Experimental evidence for synergistic effects on offspring fitness. Proc. R. Soc. B. 285, 875 (2018).

    Google Scholar 

  • 90.

    Chemnitz, J., Bagrii, N., Ayasse, M. & Steiger, S. Staying with the young enhances the fathers’ attractiveness in burying beetles. Evolution 71, 985–994 (2017).

    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Biological manganese-dependent sulfide oxidation impacts elemental gradients in redox-stratified systems: indications from the Black Sea water column

    3 Questions: What a single car can say about traffic