in

Hibernation slows epigenetic ageing in yellow-bellied marmots

  • Flatt, T. A new definition of aging? Front. Genet. 3, 148 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Berdasco, M. & Esteller, M. Hot topics in epigenetic mechanisms of aging: 2011. Aging Cell 11, 181–186 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jylhävä, J., Pedersen, N. L. & Hägg, S. Biological age predictors. EBioMedicine 21, 29–36 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, K. H., Cameron-Smith, D., Wessner, B. & Franzke, B. Biomarkers of aging: from function to molecular biology. Nutrients 8, 338 (2016).

    Google Scholar 

  • Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging 7, 1159–1170 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, T. E. Recent results: biomarkers of aging. Exp. Gerontol. 41, 1243–1246 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Unnikrishnan, A. et al. The role of DNA methylation in epigenetics of aging. Pharmacol. Ther. 195, 172–185 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18, 57 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ito, G., Yoshimura, K. & Momoi, Y. Analysis of DNA methylation of potential age-related methylation sites in canine peripheral blood leukocytes. J. Vet. Med. Sci. 79, 745–750 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, M. J., von Holdt, B., Horvath, S. & Pellegrini, M. An epigenetic aging clock for dogs and wolves. Aging 9, 1055–1068 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowe, R. et al. Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biol. 19, 22 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 16, 266 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaghlool, S. B. et al. Association of DNA methylation with age, gender, and smoking in an Arab population. Clin. Epigenetics 7, 6 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao, X., Zhang, Y., Breitling, L. P. & Brenner, H. Relationship of tobacco smoking and smoking-related DNA methylation with epigenetic age acceleration. Oncotarget 7, 46878–46889 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marioni, R. E. et al. The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int. J. Epidemiol. 45, 424–432 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics 8, 64 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, B. H. et al. DNA methylation‐based measures of biological age: meta‐analysis predicting time to death. Aging 8, 1844–1859 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christiansen, L. et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15, 149–154 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horvath, S. & Levine, A. J. HIV-1 infection accelerates age according to the epigenetic clock. J. Infect. Dis. 212, 1563–1573 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Horvath, S. et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 14, 491–495 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parrott, B. B. & Bertucci, E. M. Epigenetic aging clocks in ecology and evolution. Trends Ecol. Evol. 34, 767–770 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wagner, W. Epigenetic aging clocks in mice and men. Genome Biol. 18, 107 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. et al. Quantitative translation of dog-to-human aging by conserved remodeling of the DNA methylome. Cell Syst. 11, 176–185 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Austad, S. N. Comparative biology of aging. J. Gerontol. A 64, 199–201 (2009).

    Google Scholar 

  • Wu, C. W. & Storey, K. B. Life in the cold: links between mammalian hibernation and longevity. Biomol. Concepts 7, 41–52 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turbill, C., Bieber, C. & Ruf, T. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R. Soc. Lond. B 278, 3355–3363 (2011).

    Google Scholar 

  • Chen, Y. et al. Mechanisms for increased levels of phosphorylation of elongation factor-2 during hibernation in ground squirrels. Biochemistry 40, 11565–11570 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knight, J. E. et al. mRNA stability and polysome loss in hibernating Arctic ground squirrels (Spermophilus parryii). Mol. Cell. Biol. 20, 6374–6379 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, J., Barnes, B. M., Kohl, F. & Marr, T. G. Modulation of gene expression in hibernating arctic ground squirrels. Physiol. Genomics 32, 170–181 (2008).

    CAS 

    Google Scholar 

  • Van Breukelen, F. & Martin, S. L. Molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J. Appl. Physiol. 92, 2640–2647 (2002).

    Google Scholar 

  • Morin, P. & Storey, K. B. Evidence for a reduced transcriptional state during hibernation in ground squirrels. Cryobiology 53, 310–318 (2006).

    CAS 

    Google Scholar 

  • van Breukelen, F. & Martin, S. L. Reversible depression of transcription during hibernation. J. Comp. Physiol. B 172, 355–361 (2002).

    Google Scholar 

  • Azzu, V. & Valencak, T. G. Energy metabolism and ageing in the mouse: a mini-review. Gerontology 63, 327–336 (2017).

    Google Scholar 

  • Schrack, J. A., Knuth, N. D., Simonsick, E. M. & Ferrucci, L. ‘IDEAL’ aging is associated with lower resting metabolic rate: the Baltimore Longitudinal Study of Aging. J. Am. Geriatr. Soc. 62, 667–672 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-attar, R. & Storey, K. B. Suspended in time: molecular responses to hibernation also promote longevity. Exp. Gerontol. 134, 110889 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83, 1153–1181 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turbill, C., Ruf, T., Smith, S. & Bieber, C. Seasonal variation in telomere length of a hibernating rodent. Biol. Lett. 9, 20121095 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Turbill, C., Smith, S., Deimel, C. & Ruf, T. Daily torpor is associated with telomere length change over winter in Djungarian hamsters. Biol. Lett. 8, 304–307 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Armitage, K. B., Blumstein, D. T. & Woods, B. C. Energetics of hibernating yellow-bellied marmots (Marmota flaviventris). Comp. Biochem. Physiol. A 134, 101–114 (2003).

    Google Scholar 

  • Armitage, K. B. in Molecules to Migration: the Pressures of Life (eds Morris, S. & Vosloo, A.) 591–602 (Medimond Publishing, 2008).

  • Haghani, A. et al. DNA methylation networks underlying mammalian traits. Preprint at bioRxiv https://doi.org/10.1101/2021.03.16.435708 (2021).

  • Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.426733 (2021).

  • Yang, S. et al. Rare mutations in AHDC1 in patients with obstructive sleep apnea. Biomed. Res. Int. https://doi.org/10.1155/2019/5907361 (2019).

  • De Paoli-Iseppi, R. et al. Measuring animal age with DNA methylation: from humans to wild animals. Front. Genet. 8, 106 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Arneson, A. et al. A mammalian methylation array for profiling methylation levels at conserved sequences. Nat. Commun. 13, 783 (2022).

    CAS 

    Google Scholar 

  • Armitage, K. B. Reproductive strategies of yellow-bellied marmots: energy conservation and differences between the sexes. J. Mammal. 79, 385–393 (1998).

    Google Scholar 

  • Armitage, K. B. in Adaptive Strategies and Diversity in Marmots (eds Ramousse, R. et al.) 133–142 (International Marmot Network, 2003).

  • Snir, S., Farrell, C. & Pellegrini, M. Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics 14, 912–926 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Snir, S., VonHoldt, B. M. & Pellegrini, M. A statistical framework to identify deviation from time linearity in epigenetic aging. PLoS Comput. Biol. 12, e1005183 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Farrell, C., Snir, S. & Pellegrini, M. The epigenetic pacemaker: modeling epigenetic states under an evolutionary framework. Bioinformatics 36, 4662–4663 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marioni, R. E. et al. Tracking the epigenetic clock across the human life course: a meta-analysis of longitudinal cohort data. J. Gerontol. A 74, 57–61 (2019).

    Google Scholar 

  • El Khoury, L. Y. et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol. 20, 283 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kilgore, D. L. & Armitage, K. B. Energetics of yellow-bellied marmot populations. Ecology 59, 78–88 (1978).

    Google Scholar 

  • Armitage, K. B. Social and population dynamics of yellow-bellied marmots: results from long-term research. Annu. Rev. Ecol. Syst. 22, 379–407 (1991).

    Google Scholar 

  • Webb, D. R. Environmental harshness, heat stress, and Marmota flaviventris. Oecologia 44, 390–395 (1980).

    Google Scholar 

  • Armitage, K. B. Evolution of sociality in marmots. J. Mammal. 80, 1–10 (1999).

    Google Scholar 

  • Allainé, D. Sociality, mating system and reproductive skew in marmots: evidence and hypotheses. Behav. Processes 51, 21–34 (2000).

    Google Scholar 

  • Arnold, W. The evolution of marmot sociality. II. Costs and benefits of joint hibernation. Behav. Ecol. Sociobiol. 27, 239–246 (1990).

    Google Scholar 

  • Villanueva-Cañas, J. L., Faherty, S. L., Yoder, A. D. & Albà, M. M. Comparative genomics of mammalian hibernators using gene networks. Integr. Comp. Biol. 54, 452–462 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lyman, C. P., O’Brien, R. C., Greene, G. C. & Papafrangos, E. D. Hibernation and longevity in the Turkish hamster Mesocricetus brandti. Science 212, 668–670 (1981).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirby, R., Johnson, H. E., Alldredge, M. W. & Pauli, J. N. The cascading effects of human food on hibernation and cellular aging in free-ranging black bears. Sci. Rep. 9, 2197 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Giroud, S. et al. Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes. Proc. R. Soc. Lond. B 281, 20141131 (2014).

    Google Scholar 

  • Hoelzl, F. et al. Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis). Sci. Rep. 6, 36856 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haussmann, M. F. & Mauck, R. A. Telomeres and longevity: testing an evolutionary hypothesis. Mol. Biol. Evol. 25, 220–228 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Lieshout, S. H. J. et al. Individual variation in early-life telomere length and survival in a wild mammal. Mol. Ecol. 28, 4152–4165 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lowe, D., Horvath, S. & Raj, K. Epigenetic clock analyses of cellular senescence and ageing. Oncotarget 7, 8524–8531 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kabacik, S., Horvath, S., Cohen, H. & Raj, K. Epigenetic ageing is distinct from senescence-mediated ageing and is not prevented by telomerase expression. Aging 10, 2800–2815 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keil, G., Cummings, E. & Magalhães, J. P. Being cool: how body temperature influences ageing and longevity. Biogerontology 16, 383–397 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Means, L. W., Higgins, J. L. & Fernandez, T. J. Mid-life onset of dietary restriction extends life and prolongs cognitive functioning. Physiol. Behav. 54, 503–508 (1993).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Speakman, J. R. & Mitchell, S. E. Caloric restriction. Mol. Aspects Med. 32, 159–221 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walford, R. L. & Spindler, S. R. The response to calorie restriction in mammals shows features also common to hibernation: a cross-adaptation hypothesis. J. Gerontol. A 52, B179–B183 (1997).

    CAS 

    Google Scholar 

  • Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006).

    CAS 

    Google Scholar 

  • Conti, B. Considerations on temperature, longevity and aging. Cell. Mol. Life Sci. 65, 1626–1630 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gribble, K. E., Moran, B. M., Jones, S., Corey, E. L. & Mark Welch, D. B. Congeneric variability in lifespan extension and onset of senescence suggest active regulation of aging in response to low temperature. Exp. Gerontol. 114, 99–106 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Johns, D. W. & Armitage, K. B. Behavioral ecology of alpine yellow-bellied marmots. Behav. Ecol. Sociobiol. 5, 133–157 (1979).

    Google Scholar 

  • Armitage, K. B. Social behaviour of a colony of the yellow-bellied marmot (Marmota flaviventris). Anim. Behav. 10, 319–331 (1962).

    Google Scholar 

  • Armitage, K. B. Vernal behaviour of the yellow-bellied marmot (Marmota flaviventris). Anim. Behav. 13, 59–68 (1965).

    Google Scholar 

  • Armitage, K. B., Melcher, J. C. & Ward, J. M. Oxygen consumption and body temperature in yellow-bellied marmot populations from montane-mesic and lowland-xeric environments. J. Comp. Physiol. B 160, 491–502 (1990).

    Google Scholar 

  • Sheriff, M. J., Williams, C. T., Kenagy, G. J., Buck, C. L. & Barnes, B. M. Thermoregulatory changes anticipate hibernation onset by 45 days: data from free-living arctic ground squirrels. J. Comp. Physiol. B 182, 841–847 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwartz, C., Hampton, M. & Andrews, M. T. Hypothalamic gene expression underlying pre-hibernation satiety. Genes Brain Behav. 14, 310–318 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hampton, M., Melvin, R. G. & Andrews, M. T. Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation. PLoS ONE 8, e85157 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindner, M. et al. Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons. BMC Genomics 22, 36 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwartz, C., Hampton, M. & Andrews, M. T. Seasonal and regional differences in gene expression in the brain of a hibernating mammal. PLoS ONE 8, e58427 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dopico, X. C. et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat. Commun. 6, 7000 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jansen, H. T. et al. Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Commun. Biol. 2, 336 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Viitaniemi, H. M. et al. Seasonal variation in genome-wide DNA methylation patterns and the onset of seasonal timing of reproduction in great tits. Genome Biol. Evol. 11, 970–983 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnston, R. A., Paxton, K. L., Moore, F. R., Wayne, R. K. & Smith, T. B. Seasonal gene expression in a migratory songbird. Mol. Ecol. 25, 5680–5691 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boyer, B. B. & Barnes, B. M. Molecular and metabolic aspects of mammalian hibernation. Bioscience 49, 713–724 (1999).

    Google Scholar 

  • Siutz, C., Ammann, V. & Millesi, E. Shallow torpor expression in free-ranging common hamsters with and without food supplements. Front. Ecol. Evol. 6, 190 (2018).

    Google Scholar 

  • Langer, F., Havenstein, N. & Fietz, J. Flexibility is the key: metabolic and thermoregulatory behaviour in a small endotherm. J. Comp. Physiol. B 188, 553–563 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bieber, C., Turbill, C. & Ruf, T. Effects of aging on timing of hibernation and reproduction. Sci. Rep. 8, 13881 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Storey, K. B. & Storey, J. M. Aestivation: signaling and hypometabolism. J. Exp. Biol. 215, 1425–1433 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krivoruchko, A. & Storey, K. B. Forever young: mechanisms of natural anoxia tolerance and potential links to longevity. Oxid. Med. Cell. Longev. 3, 186–198 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Storey, K. B. & Storey, J. M. Metabolic rate depression in animals: transcriptional and translational controls. Biol. Rev. 79, 207–233 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Puspitasari, A. et al. Hibernation as a tool for radiation protection in space exploration. Life 11, 54 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blumstein, D. T. Yellow-bellied marmots: insights from an emergent view of sociality. Philos. Trans. R. Soc. Lond. B 368, 20120349 (2013).

    Google Scholar 

  • Armitage, K. B. & Downhower, J. F. Demography of yellow-bellied marmot populations. Ecology 55, 1233–1245 (1974).

    Google Scholar 

  • Zhou, W., Triche, T. J., Laird, P. W. & Shen, H. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Labarre, B. A. et al. MethylToSNP: identifying SNPs in Illumina DNA methylation array data. Epigenetics Chromatin 12, 79 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Snir, S., Wolf, Y. I. & Koonin, E. V. Universal pacemaker of genome evolution. PLoS Comput. Biol. 8, e1002785 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).

    Google Scholar 

  • Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Snir, S. & Pellegrini, M. An epigenetic pacemaker is detected via a fast conditional expectation maximization algorithm. Epigenomics 10, 695–706 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, S. & Scheipl, F. gamm4: Generalized additive mixed models using mgcv and lme4, R package version 0.2-3 (2014); http://cran.r-project.org/package=gamm4

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • RStudio Team. RStudio: Integrated Development Environment for R (RStudio Inc., 2019).

  • Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).

  • Kluyver, T. et al. in Positioning and Power in Academic Publishing: Players, Agents and Agendas (eds Loizides, F. & Scmidt, B.) 87–90 (IOS Press, 2016); https://doi.org/10.3233/978-1-61499-649-1-87

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  • Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots https://cran.r-project.org/package=ggpubr (2020).

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).

    Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Google Scholar 

  • Mclean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinho, G. M. et al. Hibernation slows epigenetic ageing in yellow-bellied marmots data sets. OSF https://doi.org/10.17605/OSF.IO/E42ZV (2021).


  • Source: Ecology - nature.com

    Searching for genetic evidence of demographic decline in an arctic seabird: beware of overlapping generations

    New maps show airplane contrails over the U.S. dropped steeply in 2020