in

Norway spruce postglacial recolonization of Fennoscandia

  • Lindquist, B. The main varieties of Picea abies (L.) Karst. In Europe, with a contribution to the theory of a forest vegetation in Scandinavia during the last Pleistocene glaciation. Acta Horti Bergiani 14, 249–342 (1948).

    Google Scholar 

  • Parducci, L. et al. Glacial survival of boreal trees in northern Scandinavia. Science 335, 1083–1086 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Parducci, L. et al. Response to comment on “Glacial survival of boreal trees in Northern Scandinavia.”. Science 338, 9–10 (2012).

    Google Scholar 

  • Birks, H. H. et al. Comment on “Glacial survival of boreal trees in Northern Scandinavia.”. Science 338, 9–11 (2012). 2012.

    Google Scholar 

  • Chen, J. et al. Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evolut. Appl. 12, 1539–1551 (2019).

    Google Scholar 

  • Giesecke, T. & Bennett, K. D. The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. J. Biogeogr. 31, 1523–1548 (2004).

    Google Scholar 

  • Latałowa, M. & van der Knaap, W. O. Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. Quat. Sci. Rev. 25, 2780–2805 (2006).

    ADS 

    Google Scholar 

  • Brewer, S. et al. Late-glacial and Holocene European pollen data. J. Maps 13, 921–928 (2017).

    Google Scholar 

  • Heikkilä, M., Fontana, S. L. & Seppä, H. Rapid Lateglacial tree population dynamics and ecosystem changes in the eastern Baltic region. J. Quat. Sci. 24, 802–815 (2009).

    Google Scholar 

  • Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).

    Google Scholar 

  • Segerström, U. & Von Stedingk, H. Early-Holocene spruce, Picea abies (L.) Karst., in west central Sweden as revealed by pollen analysis. Holocene 13, 897–906 (2003).

    ADS 

    Google Scholar 

  • Kullman, L. New and Firm Evidence for Mid-Holocene Appearance of Piceaa abies in the Scandes Mountains, Sweden. J. Ecol. 83, 439 (1995).

    Google Scholar 

  • Kullman, L. Boreal tree taxa in the central Scandes during the Late-Glacial: Implications for Late-Quaternary forest history. J. Biogeogr. 29, 1117–1124 (2002).

    Google Scholar 

  • Öberg, L. & Kullman, L. Ancient Subalpine Clonal Spruces (Picea abies): Sources of Postglacial Vegetation History in the Swedish Scandes. Arctic 64, 183–196 (2011).

    Google Scholar 

  • Paus, A., Velle, G. & Berge, J. The Lateglacial and early Holocene vegetation and environment in the Dovre mountains, central Norway, as signalled in two Lateglacial nunatak lakes. Quat. Sci. Rev. 30, 1780–1796 (2011).

    ADS 

    Google Scholar 

  • Birks, H. H., Larsen, E. & Birks, H. J. B. Did tree-Betula, Pinus and Picea survive the last glaciation along the west coast of Norway? A review of the evidence, in light of Kullman (2002). J. Biogeogr. 32, 461–1471 (2005).

    Google Scholar 

  • Tollefsrud, M. M. et al. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: Combined analysis of mitochondrial DNA and fossil pollen. Mol. Ecol. 17, 4134–4150 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Tsuda, Y. et al. The extent and meaning of hybridization and introgression between Siberian spruce (Picea obovata) and Norway spruce (Picea abies): cryptic refugia as stepping stones to the west? Mol. Ecol. 25, 2773–2789 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1–45 (2016).

    Google Scholar 

  • Gowan, E. J. et al. A new global ice sheet reconstruction for the past 80 000 years. Nat. Commun. 12, 1199 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lemdahl, G. & Berglund, B. E. Senglaciala granskogar i Sydsverige? [Late glacial spruce forests in southern Sweden?]. Sven. Botanisk Tidskr. 99, 183–186 (2005).

    Google Scholar 

  • Hicks, S. When no pollen does not mean no trees. Vegetation Hist. Archaeobotany 15, 253–261 (2006).

    Google Scholar 

  • Birks, H. H., Larsen, E. & Birks, H. J. B. On the presence of late-glacial trees in western Norway and the Scandes: A further comment. J. Biogeogr. 33, 376–377 (2006).

    Google Scholar 

  • Kullman, L. Ecological tree line history and palaeoclimate – review of megafossil evidence from the Swedish Scandes. Boreas 42, 555–567 (2013).

    Google Scholar 

  • Giesecke, T. Changing Plant Distributions and Abundances. In: S. A. Elias (ed.) The encyclopedia of quaternary science, vol 3, pp. 854– 860. Elsevier, Amsterdam, NL (2013).

  • Tollefsrud, M. M. et al. Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity 102, 549–562 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Edwards, M. E., Armbruster, W. S. & Elias, S. E. Constraints on post-glacial boreal tree expansion out of far-northern refugia. Glob. Ecol. Biogeogr. 23, 1198–1208 (2014).

    Google Scholar 

  • Li, L., et al. Teasing apart the joint effect of demography and natural selection in the birth of a contact zone. bioRxiv https://doi.org/10.1101/2022.01.11.475794 (2022).

  • Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytologist 214, 924–942 (2017).

    CAS 

    Google Scholar 

  • Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Naydenov, K., Senneville, S., Beaulieu, J., Tremblay, F. & Bousquet, J. Glacial vicariance in Eurasia: Mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evolut. Biol. 7, 233 (2007).

    Google Scholar 

  • Kullman, L. Palaeoecological, Biogeographical and Palaeoclimatological Implications of Early Holocene Immigration of Larix sibirica Ledeb. into the Scandes Mountains, Sweden. Glob. Ecol. Biogeogr. Lett. 7, 181 (1998).

    Google Scholar 

  • Kullman, L. Early postglacial appearance of tree species in northern Scandinavia: review and perspective. Quat. Sci. Rev. 27, 2467–2472 (2008).

    ADS 

    Google Scholar 

  • Suyama, Y. & Matsuki, Y. MIG-seq: An effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci. Rep. 5, 16963 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zale, R. et al. Growth of plants on the Late Weichselian ice-sheet during Greenland interstadial-1? Quat. Sci. Rev. 185, 222–229 (2018).

    ADS 

    Google Scholar 

  • Kylander, M. E., Klaminder, J., Wohlfarth, B. & Löwemark, L. Geochemical responses to paleoclimatic changes in southern Sweden since the late glacial: the Hässeldala Port lake sediment record. J. Paleolimnol. 50, 57–70 (2013).

    ADS 

    Google Scholar 

  • Ampel, L., Kylander, M. E., Steinthorsdottir, M. & Wohlfarth, B. Abrupt climate change and early lake development – the Lateglacial diatom flora at Hässeldala Port, southeastern Sweden. Boreas 44, 94–102 (2015).

    Google Scholar 

  • Wohlfarth, B. et al. Hässeldala – a key site for Last Termination climate events in northern Europe. Boreas 46, 143–161 (2017).

    Google Scholar 

  • Wohlfarth, B. et al. Climate and environment in southwest Sweden 15.5–11.3 cal. ka BP. Boreas 47, 687–710 (2018).

    Google Scholar 

  • Parducci, L., et al. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front. Ecol. Evol., 7, 189 (2019).

  • Nilsson, T. Die pollenanalytische zonengliederung der spät- und postglazialen bildungen schonens. GFF 57, 385–562 (1935).

    Google Scholar 

  • Lindbladh, M. När granen kom till byn några tankar kring granens invandring i södra Sverige. Sven. Botanisk Tidskr. 98, 249–262 (2004).

    Google Scholar 

  • Schenk, F. et al. Floral evidence for high summer temperatures in southern Scandinavia during 15–11 cal ka BP. Quat. Sci. Rev. 233, 106243 (2020).

    Google Scholar 

  • Nikolov, N., & Helmisaari, H. Silvics of the circumpolar boreal forest tree species. In A Systems Analysis of the Global Boreal Forest (pp. 13–84). Cambridge University Press (1992).

  • Wohlfarth, B. Ice-free conditions in Sweden during Marine Oxygen Isotope Stage 3? Boreas 39, 377–398 (2010).

    Google Scholar 

  • Sarala, P., Väliranta, M., Eskola, T. & Vaikutiené, G. First physical evidence for forested environment in the Arctic during MIS 3. Sci. Rep. 6, 29054 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Svenning, J.-C., Normand, S. & Kageyama, M. Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J. Ecol. 96, 1117–1127 (2008).

    Google Scholar 

  • Wang, X., Bernhardsson, C. & Ingvarsson, P. K. Demography and Natural Selection Have Shaped Genetic Variation in the Widely Distributed Conifer Norway Spruce (Picea abies). Genome Biol. Evolution 12, 3803–3817 (2020).

    Google Scholar 

  • Binney, H. A. et al. The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quat. Sci. Rev. 28, 2445–2464 (2009).

    ADS 

    Google Scholar 

  • Krüger, S., Dörfler, W., Bennike, O. & Wolters, S. Life in Doggerland – palynological investigations of the environment of prehistoric hunter-gatherer societies in the North Sea Basin. EG – Quat. Sci. J. 66, 3–13 (2017).

    Google Scholar 

  • Alsos, I. G. et al. Last Glacial Maximum environmental conditions at Andøya, northern Norway; evidence for a northern ice-edge ecological “hotspot.”. Quat. Sci. Rev. 239, 106364 (2020).

    Google Scholar 

  • Alsos, I. G. et al. Frequent Long-Distance Plant Colonization in the Changing Arctic. Science 316, 1606–1609 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Epp, L. S. et al. New environmental metabarcodes for analysing soil DNA: Potential for studying past and present ecosystems. Mol. Ecol. 21, 1821–1833 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Capo, E. et al. Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations. Quaternary 4, 6 (2021).

    Google Scholar 

  • Kullman, L. Immigration of Picea abies into North-Central Sweden. New evidence of regional expansion and tree-limit evolution. Nord. J. Bot. 21, 39–54 (2001).

    Google Scholar 

  • Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ficetola, G. F. et al. Replication levels, false presences, and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15, 543–556 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Genomics (2013) arXiv:1303.3997

  • Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, 2074–2093 (2006).

    CAS 

    Google Scholar 

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 38, 1358 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13, 946–952 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Karney, C. F. F. Algorithms for geodesics. J. Geod. 87, 43–55 (2013).

    ADS 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing https://www.r-project.org/ (2020).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).


  • Source: Ecology - nature.com

    Changes in trophic structure of an exploited fish community at the centennial scale are linked to fisheries and climate forces

    Microbes and minerals may have set off Earth’s oxygenation