in

Revealing microhabitat requirements of an endangered specialist lizard with LiDAR

  • Ceballos, G., García, A. & Ehrlich, P. R. The sixth extinction crisis: Loss of animal populations and species. J. Cosmol. 8, 31 (2010).

    Google Scholar 

  • Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Scott, J. M., Goble, D. D., Haines, A. M., Wiens, J. A. & Neel, M. C. Conservation-reliant species and the future of conservation. Conserv. Lett. 3, 91–97 (2010).

    Google Scholar 

  • Johnson, M. A., Kirby, R., Wang, S. & Losos, J. What drives variation in habitat use by Anolis lizards: Habitat availability or selectivity?. Can. J. Zool. 84, 877–886 (2006).

    Google Scholar 

  • Gaston, K. J., Blackburn, T. M. & Lawton, J. H. Interspecific abundance-range size relationships: an appraisal of mechanisms. J. Anim. Ecol. 66, 579–601 (1997).

    Google Scholar 

  • Devictor, V. et al. Defining and measuring ecological specialization. J. Appl. Ecol. 47, 15–25 (2010).

    Google Scholar 

  • Razgour, O., Hanmer, J. & Jones, G. Using multi-scale modelling to predict habitat suitability for species of conservation concern: The grey long-eared bat as a case study. Biol. Cons. 144, 2922–2930 (2011).

    Google Scholar 

  • Jetz, W., Sekercioglu, C. H. & Watson, J. E. Ecological correlates and conservation implications of overestimating species geographic ranges. Conserv. Biol. 22, 110–119 (2008).

    PubMed 

    Google Scholar 

  • Seddon, P. J. From reintroduction to assisted colonization: Moving along the conservation translocation spectrum. Restor. Ecol. 18, 796–802 (2010).

    Google Scholar 

  • Tomlinson, S., Lewandrowski, W., Elliott, C. P., Miller, B. P. & Turner, S. R. High-resolution distribution modeling of a threatened short-range endemic plant informed by edaphic factors. Ecol. Evol. 10, 763–773 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tomlinson, S., Webber, B. L., Bradshaw, S. D., Dixon, K. W. & Renton, M. Incorporating biophysical ecology into high-resolution restoration targets: insect pollinator habitat suitability models. Restor. Ecol. 26, 338–347 (2018).

    Google Scholar 

  • Glen, A. S., Sutherland, D. R. & Cruz, J. An improved method of microhabitat assessment relevant to predation risk. Ecol. Res. 25, 311–314 (2010).

    Google Scholar 

  • Limberger, D., Trillmich, F., Biebach, H. & Stevenson, R. D. Temperature regulation and microhabitat choice by free-ranging Galapagos fur seal pups (Arctocephalus galapagoensis). Oecologia 69, 53–59 (1986).

    PubMed 

    Google Scholar 

  • Parmenter, R. R., Parmenter, C. A. & Cheney, C. D. Factors influencing microhabitat partitioning in arid-land darkling beetles (Tenebrionidae): temperature and water conservation. J. Arid Environ. 17, 57–67 (1989).

    Google Scholar 

  • Kleckova, I., Konvicka, M. & Klecka, J. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity. J. Therm. Biol 41, 50–58 (2014).

    PubMed 

    Google Scholar 

  • Napierała, A. & Błoszyk, J. Unstable microhabitats (merocenoses) as specific habitats of Uropodina mites (Acari: Mesostigmata). Exp. Appl. Acarol. 60, 163–180 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marshall, K. L., Philpot, K. E. & Stevens, M. Microhabitat choice in island lizards enhances camouflage against avian predators. Sci. Rep. 6, 1–10 (2016).

    Google Scholar 

  • Lovell, P. G., Ruxton, G. D., Langridge, K. V. & Spencer, K. A. Egg-laying substrate selection for optimal camouflage by quail. Curr. Biol. 23, 260–264 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301 (2017).

    Google Scholar 

  • Measey, G. J., Stevenson, B. C., Scott, T., Altwegg, R. & Borchers, D. L. Counting chirps: Acoustic monitoring of cryptic frogs. J. Appl. Ecol. 54, 894–902 (2017).

    Google Scholar 

  • Lambert, K. T. & McDonald, P. G. A low-cost, yet simple and highly repeatable system for acoustically surveying cryptic species. Austral Ecol. 39, 779–785 (2014).

    Google Scholar 

  • Picciulin, M., Kéver, L., Parmentier, E. & Bolgan, M. Listening to the unseen: Passive Acoustic Monitoring reveals the presence of a cryptic fish species. Aquat. Conserv. Mar. Freshwat. Ecosyst. 29, 202–210 (2019).

    Google Scholar 

  • Linkie, M. et al. Cryptic mammals caught on camera: assessing the utility of range wide camera trap data for conserving the endangered Asian tapir. Biol. Cons. 162, 107–115 (2013).

    Google Scholar 

  • Balme, G. A., Hunter, L. T. & Slotow, R. Evaluating methods for counting cryptic carnivores. J. Wildl. Manag. 73, 433–441 (2009).

    Google Scholar 

  • Carbone, C. et al. The use of photographic rates to estimate densities of tigers and other cryptic mammals in Animal Conservation forum. 75–79 (2001) (Cambridge University Press).

  • Russell, J. C., Hasler, N., Klette, R. & Rosenhahn, B. Automatic track recognition of footprints for identifying cryptic species. Ecology 90, 2007–2013 (2009).

    PubMed 

    Google Scholar 

  • Jarvie, S. & Monks, J. Step on it: can footprints from tracking tunnels be used to identify lizard species?. N. Z. J. Zool. 41, 210–217 (2014).

    Google Scholar 

  • Watts, C., Thornburrow, D., Rohan, M. & Stringer, I. Effective monitoring of arboreal giant weta (Deinacrida heteracantha and D. mahoenui; Orthoptera: Anostostomatidae) using footprint tracking tunnels. J. Orthop. Res. 22, 93–100 (2013).

    Google Scholar 

  • Williams, E. M. Developing monitoring methods for cryptic species: a case study of the Australasian bittern, Botaurus poiciloptilus: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Manawatū, New Zealand, Massey University (2016).

  • Hacking, J., Abom, R. & Schwarzkopf, L. Why do lizards avoid weeds?. Biol. Invasions 16, 935–947 (2014).

    Google Scholar 

  • Valentine, L. E. Habitat avoidance of an introduced weed by native lizards. Austral. Ecol. 31, 732–735 (2006).

    Google Scholar 

  • Hawkins, J. P., Roberts, C. M. & Clark, V. The threatened status of restricted-range coral reef fish species in Animal Conservation forum. 81–88 (2000) (Cambridge University Press).

  • Mason, L. D., Bateman, P. W. & Wardell-Johnson, G. W. The pitfalls of short-range endemism: High vulnerability to ecological and landscape traps. PeerJ 6, e4715 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dassot, M., Constant, T. & Fournier, M. The use of terrestrial LiDAR technology in forest science: Application fields, benefits and challenges. Ann. For. Sci. 68, 959–974 (2011).

    Google Scholar 

  • Weber, H. LiDAR Sensor Functionality and Variants (2018).

  • Michel, P., Jenkins, J., Mason, N., Dickinson, K. & Jamieson, I. Assessing the ecological application of lasergrammetric techniques to measure fine-scale vegetation structure. Eco. Inform. 3, 309–320 (2008).

    Google Scholar 

  • Lim, K., Treitz, P., Wulder, M., St-Onge, B. & Flood, M. LiDAR remote sensing of forest structure. Prog. Phys. Geogr. 27, 88–106 (2003).

    Google Scholar 

  • Anderson, L. & Burgin, S. Patterns of bird predation on reptiles in small woodland remnant edges in peri-urban north-western Sydney, Australia. Landsc. Ecol. 23, 1039–1047 (2008).

    Google Scholar 

  • Hannam, M. & Moskal, L. M. Terrestrial laser scanning reveals seagrass microhabitat structure on a tideflat. Remote Sensing 7, 3037–3055 (2015).

    Google Scholar 

  • Zavalas, R., Ierodiaconou, D., Ryan, D., Rattray, A. & Monk, J. Habitat classification of temperate marine macroalgal communities using bathymetric LiDAR. Remote Sens. 6, 2154–2175 (2014).

    Google Scholar 

  • Mandlburger, G., Hauer, C., Wieser, M. & Pfeifer, N. Topo-bathymetric LiDAR for monitoring river morphodynamics and instream habitats—A case study at the Pielach River. Remote Sens. 7, 6160–6195 (2015).

    Google Scholar 

  • Laize, C. et al. Use of LIDAR to characterise river morphology (2014).

  • Cooper, C. & Withers, P. Physiological significance of the microclimate in night refuges of the numbat Myrmecobius fasciatus. Austral. Mammal. 27, 169–174 (2005).

    Google Scholar 

  • Orell, P. & Morris, K. Chuditch recovery plan. Western Austral. Wildl. Manag. Program 13, 1 (1994).

    Google Scholar 

  • Pearson, D. Western Spiny-Tailed Skink (Egernia stokesii) Recovery Plan (Department of Environment and Conservation, 2012).

    Google Scholar 

  • McPeek, M. A., Cook, B. & McComb, W. Habitat selection by small mammals. Trans. Kentucky Acad. Sci. 44, 68–73 (1983).

    Google Scholar 

  • Armstrong, K. The distribution and roost habitat of the orange leaf-nosed bat, Rhinonicteris aurantius, in the Pilbara region of Western Australia. Wildl. Res. 28, 95–104 (2001).

    Google Scholar 

  • Mancina, C. et al. Endemics under threat: an assessment of the conservation status of Cuban bats. Hystrix Ital. J. Mammal. 18, 3–15 (2007).

    Google Scholar 

  • Webb, M. H., Holdsworth, M. C. & Webb, J. Nesting requirements of the endangered Swift Parrot (Lathamus discolor). Emu-Austral. Ornithol. 112, 181–188 (2012).

    Google Scholar 

  • Watson, S. J., Watson, D. M., Luck, G. W. & Spooner, P. G. Effects of landscape composition and connectivity on the distribution of an endangered parrot in agricultural landscapes. Landsc. Ecol. 29, 1249–1259 (2014).

    Google Scholar 

  • Duffield, G. & Bull, M. Stable social aggregations in an Australian lizard, Egernia stokesii. Naturwissenschaften 89, 424–427 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Duffield, G. A. & Bull, M. Characteristics of the litter of the gidgee skink, Egernia stokesii. Wildl. Res. 23, 337–341 (1996).

    Google Scholar 

  • Ecoscape. Blue Hills – Mungada East Terrestrial Fauna Assessment. (Sinosteel Midwest Corporation, 2016).

  • Silver Lake Resources. Department of Water and Environmental Regulation Prescribe Premise Licence Application. (Egan Street Resources Limited, 2021).

  • Maptek. I-Site 8800 Scanning System Solutions for Mining (2010).

  • SoilWater Group. 3D LiDAR Scanning (2018).

  • United States Department of Transportation. Ground-Based LiDAR Rock Slope Mapping and Assessment (2008).

  • R Core Team. R: a language and environment for statistical computing, https://www.R-project.org/ (2017).

  • Bartoń, K. Package ‘MuMIn’, https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (2020).

  • Converse, S. J., White, G. C. & Block, W. M. Small mammal responses to thinning and wildfire in ponderosa pine-dominated forests of the southwestern United States. J. Wildl. Manag. 70, 1711–1722 (2006).

    Google Scholar 

  • Vieira, I. C. G. et al. Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amazonia. Remote Sens. Environ. 87, 470–481 (2003).

    Google Scholar 

  • Whitford, K. & Williams, M. Hollows in jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) trees: II. Selecting trees to retain for hollow dependent fauna. For. Ecol. Manag. 160, 215–232 (2002).

    Google Scholar 

  • Salmona, J., Dixon, K. M. & Banks, S. C. The effects of fire history on hollow-bearing tree abundance in montane and subalpine eucalypt forests in southeastern Australia. For. Ecol. Manag. 428, 93–103 (2018).

    Google Scholar 

  • Lindenmayer, D., Cunningham, R., Donnelly, C., Tanton, M. & Nix, H. The abundance and development of cavities in Eucalyptus trees: a case study in the montane forests of Victoria, southeastern Australia. For. Ecol. Manage. 60, 77–104 (1993).

    Google Scholar 

  • Craig, M. D. et al. How many mature microhabitats does a slow-recolonising reptile require? Implications for restoration of bauxite minesites in south-western Australia. Aust. J. Zool. 59, 9–17 (2011).

    Google Scholar 

  • Schwarzkopf, L., Barnes, M. & Goodman, B. Belly up: Reduced crevice accessibility as a cost of reproduction caused by increased girth in a rock-using lizard. Austral Ecol. 35, 82–86 (2010).

    Google Scholar 

  • Cooper, W. E. Jr. & Whiting, M. J. Islands in a sea of sand: Use of Acacia trees by tree skinks in the Kalahari Desert. J. Arid Environ. 44, 373–381 (2000).

    Google Scholar 

  • Webb, J. K. & Shine, R. Out on a limb: conservation implications of tree-hollow use by a threatened snake species (Hoplocephalus bungaroides: Serpentes, Elapidae). Biol. Cons. 81, 21–33 (1997).

    Google Scholar 

  • Fitzgerald, M., Shine, R. & Lemckert, F. Radiotelemetric study of habitat use by the arboreal snake Hoplocephalus stephensii (Elapidae) in eastern Australia. Copeia 2002, 321–332 (2002).

    Google Scholar 

  • Grimm-Seyfarth, A., Mihoub, J. B. & Henle, K. Too hot to die? The effects of vegetation shading on past, present, and future activity budgets of two diurnal skinks from arid Australia. Ecol. Evol. 7, 6803–6813 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Attum, O., Eason, P., Cobbs, G. & El Din, S. M. B. Response of a desert lizard community to habitat degradation: Do ideas about habitat specialists/generalists hold?. Biol. Cons. 133, 52–62 (2006).

    Google Scholar 

  • Melville, J. & Schulte Ii, J. A. Correlates of active body temperatures and microhabitat occupation in nine species of central Australian agamid lizards. Austral. Ecol. 26, 660–669. https://doi.org/10.1046/j.1442-9993.2001.01152.x (2001).

    Article 

    Google Scholar 

  • Munguia-Vega, A., Rodriguez-Estrella, R., Shaw, W. W. & Culver, M. Localized extinction of an arboreal desert lizard caused by habitat fragmentation. Biol. Cons. 157, 11–20 (2013).

    Google Scholar 

  • Pietrek, A., Walker, R. & Novaro, A. Susceptibility of lizards to predation under two levels of vegetative cover. J. Arid Environ. 73, 574–577 (2009).

    Google Scholar 

  • Moreno, S., Delibes, M. & Villafuerte, R. Cover is safe during the day but dangerous at night: The use of vegetation by European wild rabbits. Can. J. Zool. 74, 1656–1660 (1996).

    Google Scholar 

  • Tchabovsky, A. V., Krasnov, B., Khokhlova, I. S. & Shenbrot, G. I. The effect of vegetation cover on vigilance and foraging tactics in the fat sand rat Psammomys obesus. J. Ethol. 19, 105–113 (2001).

    Google Scholar 

  • Pizzuto, T. A., Finlayson, G. R., Crowther, M. S. & Dickman, C. R. Microhabitat use by the brush-tailed bettong (Bettongia penicillata) and burrowing bettong (B. lesueur) in semiarid New South Wales: Implications for reintroduction programs. Wildl. Res. 34, 271–279 (2007).

    Google Scholar 

  • Hawlena, D., Saltz, D., Abramsky, Z. & Bouskila, A. Ecological trap for desert lizards caused by anthropogenic changes in habitat structure that favor predator activity. Conserv. Biol. 24, 803–809 (2010).

    PubMed 

    Google Scholar 

  • Oversby, W., Ferguson, S., Davis, R. A. & Bateman, P. Bad news for bobtails: Understanding predatory behaviour of a resource-subsidised corvid towards an island endemic reptile. Wildl. Res. 45, 595–601 (2018).

    Google Scholar 

  • Pianka, E. R. Rarity in A ustralian desert lizards. Austral Ecol. 39, 214–224 (2014).

    Google Scholar 

  • Germano, J. M. & Bishop, P. J. Suitability of amphibians and reptiles for translocation. Conserv. Biol. 23, 7–15 (2009).

    PubMed 

    Google Scholar 

  • Tsiouvaras, C., Havlik, N. & Bartolome, J. Effects of goats on understory vegetation and fire hazard reduction in a coastal forest in California. For. Sci. 35, 1125–1131 (1989).

    Google Scholar 

  • Tasker, E. M. & Bradstock, R. A. Influence of cattle grazing practices on forest understorey structure in north-eastern New South Wales. Austral. Ecol. 31, 490–502 (2006).

    Google Scholar 

  • Payne, A., Van Vreeswyk, A., Leighton, K., Pringle, H. & Hennig, P. An inventory and condition survey of the Sandstone-Yalgoo-Paynes Find area, Western Australia (1998).

  • Shoo, L. P., Freebody, K., Kanowski, J. & Catterall, C. P. Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration. Conserv. Biol. 30, 121–132 (2016).

    PubMed 

    Google Scholar 

  • Lamb, D. in Regreening the Bare Hills 325–358 (Springer, 2011).

  • Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).

    PubMed 

    Google Scholar 

  • Stow, A. J., Sunnucks, P., Briscoe, D. & Gardner, M. The impact of habitat fragmentation on dispersal of Cunningham’s skink (Egernia cunninghami): Evidence from allelic and genotypic analyses of microsatellites. Mol. Ecol. 10, 867–878 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Stow, A. & Sunnucks, P. High mate and site fidelity in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat. Mol. Ecol. 13, 419–430 (2004).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    A better way to separate gases

    Snake-like limb loss in a Carboniferous amniote