in

Spatial and temporal evolution of ecological vulnerability based on vulnerability scoring diagram model in Shennongjia, China

Spatial and temporal distribution of ecological vulnerability

Based on the SPCA model, the temporal and spatial distribution of ecological vulnerability in Shennongjia is obtained, as shown in Fig. 3. From 1996 to 2018, the area of micro vulnerability areas continued to increase and occupied a dominant position. Moreover, their distribution pattern tended to be gradually integrated, indicating that the structure and function of the ecosystem in most areas of Shennongjia were relatively complete, and in a healthy and stable state. However, the ecological environment of the severely vulnerable areas in the northeast, south and southwest of Shennongjia is in a trend of continuous deterioration, and the risk of extreme vulnerability is gradually emerging. From the spatial distribution of ecological vulnerability in 2018, it can be seen that the extremely vulnerable areas have increased significantly, and exhibit a dense and continuous distribution trend in some areas, accompanied by the development of rapid urbanization and highway traffic construction. There are also high-risk ecological vulnerable zones and the extremely vulnerability areas.

Figure 3

Spatial and temporal distribution of ecological vulnerability in Shennongjia. Spatial and temporal distribution of ecological vulnerability for (a) 1996, (b) 2007, (c) 2018 in Shennongjia, China.

Full size image

It can be seen from the area proportion of different levels of vulnerable areas (Fig. 4) that the area proportion of micro and extremely vulnerable areas increased significantly. Specifically, the area proportion of micro vulnerable areas increased from 59.98% in 1996 to 71.02% in 2018, while the area proportion of extremely vulnerable areas increased from 1.23% in 1996 to 7.32% in 2018. This shows that the ecological vulnerability of Shennongjia exhibits a significant two-level differentiation trend.

Figure 4

Proportion of the area of vulnerable districts at all levels in Shennongjia.

Full size image

Dynamic change of ecological vulnerability

During the study period, the areas with a positive fitting slope account for more than 90% of the total area of the study area, which indicates that the overall vulnerability of Shennongjia presents a downward trend. According to the natural discontinuity point method, the dynamic change results of ecological vulnerability in Shennongjia are divided into five levels (Fig. 5), in order to discern the spatial angle more intuitively and clearly. It can be seen that the ecological vulnerability of most regions exhibits a decreasing trend, while the ecological vulnerability of certain regions increases.

Figure 5

Dynamic changes of ecological vulnerability in Shennongjia. Changes in the ecological vulnerability of Shennongjia in different periods: (a) 1996–2007, (b) 2007–2018, (c) 1996–2018.

Full size image

From 1996 to 2007, whether the spatial distribution trend of ecological vulnerability increased or decreased is not obvious. However, from 2007 to 2018, the areas with significantly increased ecological vulnerability were concentrated in Yangri and Songbai in the northeast and near the Hongping airport in Shennongjia in the midwest. During this same time period, in the areas around the main urban areas and along the roads that were seriously disturbed by human activities, ecological vulnerability also exhibited a decreasing trend.

Change trend of comprehensive ecological vulnerability index

Annual change of the comprehensive ecological vulnerability index

The results of the comprehensive ecological vulnerability index of 1996, 2007, and 2018 are 2.77, 2.71, and 2.51, respectively. From the annual change of the ecological vulnerability index in Shennongjia (Fig. 6), it can be seen that the ecological vulnerability of Shennongjia showed a downward trend from 1996 to 2018, and the stability and health of the ecosystem were improved overall.

Figure 6

Annual change of the comprehensive ecological vulnerability index. CEVI, comprehensive ecological vulnerability index.

Full size image

Among them, the decline of ecological vulnerability is relatively small from 1996 to 2007, which may be ascribed to the preliminary implementation of restrictive policies, such as banning logging and returning farmland to forest, which reduced ecological exposure factors, such as illegal logging and deforestation. From 2007 to 2018, the comprehensive index of ecological vulnerability in Shennongjia decreased significantly, which is mainly due to the designation of national nature reserves and the implementation of various ecological protection projects36. While reducing the exposed ecological disturbance, it simultaneously markedly improved the adaptability of the ecosystem, and further reduced the overall ecological vulnerability of the region.

Changes of the comprehensive ecological vulnerability Index in different towns

According to the comprehensive index of ecological vulnerability of eight towns in the Shennongjia (Table 5, Fig. 7), the ecological vulnerability difference of each town is obvious. In 2018, the comprehensive index of ecological vulnerability of each town is lower than that in 1996 and 2007. The results show that the average value of CEVI is, from high to low, Yangri, Xiaguping, Songbai, Xinhua, Jiuhu, Hongping, Muyu, and Songluo. The maximum value of the CEVI appeared in Yangri in 1996, and the minimum value occurred in Songluo in 2018.

Table 5 Comprehensive ecological vulnerability index of towns.
Full size table
Figure 7

Radar chart of the comprehensive ecological vulnerability index of towns.

Full size image

Driving factors of spatial and temporal evolution of ecological vulnerability

The formation and evolution of ecological vulnerability in Shennongjia constitutes a dynamic process, which is the result of interactions of human and natural factors. Based on the principle of SPCA of ecological vulnerability, the transformed principal components are extracted, and the rotated factor load matrix is obtained to reflect the different effects of various factors on the evaluation results. Each principal component possesses a different ability to explain the original index factors, but it has similar rules in the first four principal components (Table 6). The cumulative contribution rate of the first four principal components in the three groups of data reached more than 80%, which can reflect the information of most factors, and thus it has good representativeness.

Table 6 Principal component loading and score.
Full size table

Among the first principal component and the third principal component, the contribution of land-use type index (C9) is higher; in the second principal component, the contribution of population density (C1) is higher; among the fourth principal components, the contribution of vegetation coverage (C13) is higher. Moreover, the contribution of other factors in different years and main components is dissimilar.

The influence of land-use type on ecological vulnerability

Whether due to natural or human factors, the original properties of the ecosystem are altered by changing the surface cover. Therefore, land-use type is an important factor affecting regional ecological vulnerability. The difference of surface cover leads to the difference of ecological community, and then produces varied ecological environmental benefits. Forest land is the most important land-use type in the study area, and the ecological vulnerability of the distribution area is mainly micro degree and light. However, consider the important ecological value of the forest ecosystem, attention should be given to its vulnerability. The ecological vulnerability of the construction land is mainly severe and extreme, which is largely due to the expansion of construction land, which destroys the original ecological structure and ecological community. Furthermore, a large number of manmade patches replace natural patches in the construction land, and biodiversity decreases, leading to the decline of the stability of ecological structures and the increase of vulnerability.

The influence of population density on ecological vulnerability

Population density is one of the most direct exposure factors in the vulnerability of ecological environments. Population density is generally higher than that in high area, and it is also a region with a developed economy and high urbanization. In these areas, human activities are frequent, which usually impart a negative disturbance to the natural environment, including the rapid expansion of cultivated land and construction land area, as well as high discharge of production and domestic wastewater waste, which has caused great pressure on the ecological environment, leading to a significant increase in ecological vulnerability.

The influence of vegetation cover on ecological vulnerability

From 1996 to 2018, the vegetation coverage of the Shennongjia exhibited an overall upward trend, which is of positive significance to the reduction of the vulnerability of the ecosystem. Vegetation, as the main body of the land ecosystem, maintains the balance of ecological environment through interactions with climate, landform, and soil37. Extant literature shows that the change of vegetation coverage is an major factor of regional ecological environment change, and has a clear indication function for the change of regional ecological environment38. The spatial distribution trend of ecological vulnerability in the Shennongjia is markedly similar to that of vegetation coverage. The ecological vulnerability of regions with higher vegetation coverage is lower, exhibiting a significant negative correlation. In the Shennongjia, the change of vegetation coverage is also obviously influenced by human factors.

Contribution of landscape pattern index to ecological vulnerability

The spatial distribution of each index in Shennongjia have been obtained from previous studies47. From the unary linear regression analysis, in the years of 1996, 2007 and 2018, the NP, LPI, AI, DIVISION and SHDI are all significantly correlated with the ecological vulnerability index (Fig. 8).

Figure 8

Scatter plot of linear regression of landscape pattern index and ecological vulnerability index. EVI, ecological vulnerability index.

Full size image

In the case of different independent variable combinations in 1996, 2007 and 2018, the multiple regression relationship between the independent variable and the dependent variable of each group is significantly correlated, and the multiple linear regression equation of the full model is obtained as follows:

$$1996{:};;{text{ Y}} = 6.443 + 0.014{text{X}}_{1} + 0.006{text{X}}_{2} – 0.038{text{X}}_{3} – 0.066{text{X}}_{4} + 0.058{text{X}}_{5}$$

$$2007{:};;{text{ Y}} = 4.497 + 0.016{text{X}}_{1} + 0.007{text{X}}_{2} + 0.793{text{X}}_{3} – 0.047{text{X}}_{4} – 0.305{text{X}}_{5}$$

$$2018{:};;{text{ Y}} = – 1.980 + 0.037{text{X}}_{1} + 0.006{text{X}}_{2} + 0.703{text{X}}_{3} + 0.019{text{X}}_{4} – 0.123{text{X}}_{5}$$

The contribution rate of landscape pattern index to ecological vulnerability in different years of 1996, 2007, and 2018 is shown in Table 7. The contribution of AI and NP to ecological vulnerability in 1996 was high; the contribution of NP and AI to ecological vulnerability was higher in 2007; and the NP in 2018 had the highest contribution to ecological vulnerability, reaching 95.77%.

Table 7 Contribution of the landscape pattern index to the ecological vulnerability index.
Full size table

Based on the analysis results from 1996 to 2018, the contribution of NP and AI to ecological vulnerability is relatively high. The main reason for this is that the forest coverage rate of Shennongjia is as high as 91%. Specifically, with the forest as the landscape matrix, the NP is small and the connectivity between patches is high, showing a trend of aggregation. The degree of landscape fragmentation is relatively low and decreases annually, and ecological vulnerability decreases with the decrease of the degree of landscape fragmentation, Therefore, the impact of NP and AI on ecological vulnerability is highly significant.

The AI and ecological vulnerability index always exhibit a significant negative correlation in the study period. In the 1996 research results, the contribution of AI to ecological vulnerability is the most obvious. Combined with the spatial distribution of ecological vulnerability, it can be seen that most of the severe and extremely vulnerable areas are distributed in areas with low AI. Most of them are the distribution areas of artificial patches, such as rural living areas, airports, tourism centers, etc., which are obviously disturbed by human activities, resulting in low connectivity among various landscape types, which greatly reduces the aggregation degree of landscape and increases regional vulnerability.

There is also a significant positive correlation between the NP and the ecological vulnerability index. This is especially the case in 2018, when the contribution of the NP to ecological vulnerability is as high as 95.77%, which is mainly attributable to the urbanization construction of Songbai town in Shennongjia. Combined with the land-use structure map, it can be seen that the number of construction land patches in the northeast region increased sharply. In this process, the renewal of patches aggravates the degree of landscape fragmentation and plays a key role in the aggravation of regional vulnerability risk.

Although the impact of LPI, SHDI and DIVISION on ecological vulnerability always exists, the contribution is not very significant. Among them, SHDI contributed 10.38% in 2007, which was more sensitive to the unbalanced distribution of each patch type. In areas with high SHDI, landscape heterogeneity is high, the ecological pattern is unstable, and ecological vulnerability increases.


Source: Ecology - nature.com

A better way to separate gases

Snake-like limb loss in a Carboniferous amniote