in

Evolutionary causes and consequences of ungulate migration

  • Dobson, A. P. et al. Road will ruin Serengeti. Nature 467, 272–273 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Larsen, F. et al. Wildebeest migration drives tourism demand in the Serengeti. Biol. Conserv. 248, 108688 (2020).

    Article 

    Google Scholar 

  • Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20, 741–750 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Bischof, R. et al. A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am. Nat. 180, 407–424 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Merkle, J. A. et al. Large herbivores surf waves of green-up during spring. Proc. Biol. Sci. 283, 20160456 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fryxell, J. M., Greever, J. & Sinclair, A. R. E. Why are migratory ungulates so abundant? Am. Nat.131, 781–798 (1988).

    Article 

    Google Scholar 

  • Staver, A. C. & Hempson, G. P. Seasonal dietary changes increase the abundances of savanna herbivore species. Sci. Adv. 6, eabd2848 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kauffman, M. J. et al. Causes, consequences, and conservation of ungulate migration. Annu. Rev. Ecol. Evol. Syst. 52, 453–478 (2021).

    Article 

    Google Scholar 

  • Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6, 0087–0098 (2003).

    Article 

    Google Scholar 

  • Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bolger, D. T., Newmark, W. D., Morrison, T. A., & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 63–77 (2007).

    PubMed 

    Google Scholar 

  • Fryxell, J. M. & Holt, R. D. Environmental change and the evolution of migration. Ecology 94, 1274–1279 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shaw, A. K. Drivers of animal migration and implications in changing environments. Evol. Ecol. 30, 991–1007 (2016).

    Article 

    Google Scholar 

  • Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Nelson, M. E. Development of migratory behavior in northern white-tailed deer. Can. J. Zool. 76, 426–432 (1998).

    Article 

    Google Scholar 

  • Berg, J. E., Hebblewhite, M., St. Clair, C. C. & Merrill, E. H. Prevalence and mechanisms of partial migration in ungulates. Front. Ecol. Evol. 7, 325 (2019).

    Article 

    Google Scholar 

  • Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).

    PubMed 
    Article 

    Google Scholar 

  • Found, R. & St. Clair, C. C. Behavioural syndromes predict loss of migration in wild elk. Anim. Behav. 115, 35–46 (2016).

    Article 

    Google Scholar 

  • Abraham, J. O., Hempson, G. P., Faith, J. T. & Staver, A. C.Seasonal strategies differ between tropical and extratropical herbivores. J. Anim. Ecol. 91, 681–692 (2022).

    PubMed 
    Article 

    Google Scholar 

  • Whitehead, H., Laland, K. N., Rendell, L., Thorogood, R. & Whiten, A. The reach of gene–culture coevolution in animals. Nat. Commun. 10, 2405 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Scanlon, T. M., Caylor, K. K., Manfreda, S., Levin, S. A. & Rodriguez-Iturbe, I. Dynamic response of grass cover to rainfall variability: implications for the function and persistence of savanna ecosystems. Adv. Water Res. 28, 291–302 (2005).

    Article 

    Google Scholar 

  • Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).

    Article 

    Google Scholar 

  • Fryxell, J. M. & Sinclair, A. R. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–241 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).

    Article 

    Google Scholar 

  • Langvatn, R., Albon, S. D., Burkey, T. & Clutton-Brock, T. H. Climate, plant phenology and variation in age of first reproduction in a temperate herbivore. J. Anim. Ecol. 65, 653–670 (1996).

    Article 

    Google Scholar 

  • Webber, Q. M. R. & McGuire, L. P. Heterothermy, body size, and locomotion as ecological predictors of migration in mammals. Mamm. Rev. 52, 82–95 (2022).

    Article 

    Google Scholar 

  • Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biol. Rev. Camb. Philos. Soc. 94, 328–352 (2018).

    PubMed Central 
    Article 

    Google Scholar 

  • Jarman, P. J. The social organisation of antelope in relation to their ecology. Behaviour 48, 215–267 (1974).

    Article 

    Google Scholar 

  • Hein, A. M., Hou, C. & Gillooly, J. F. Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104–110 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Abraham, J. O., Hempson, G. P. & Staver, A. C. Drought-response strategies of savanna herbivores. Ecol. Evol. 9, 7047–7056 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Owen-Smith, R. N. Megaherbivores: the Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, 1988).

    Book 

    Google Scholar 

  • Gonzalez-Voyer, A. & von Hardenberg, A. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice (ed. Garamszegi, L. Z.) 201–229 (Springer, 2014).

  • Pérez-Barbería, F. J., Gordon, I. J. & Nores, C. Evolutionary transitions among feeding styles and habitats in ungulates. Evol. Ecol. Res. 3, 221–230 (2001).

    Google Scholar 

  • Staver, A. C., Abraham, J. O., Hempson, G. P., Karp, A. T. & Faith, J. T. The past, present, and future of herbivore impacts on savanna vegetation. J. Ecol. 109, 2804–2822 (2021).

    Article 

    Google Scholar 

  • Janis, C. M. in The Ecology of Browsing and Grazing (eds Gordon, I. J. & Prins, H. H. T.) 21–45 (Springer, 2008).

  • Janis, C. M. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24, 467–500 (1993).

    Article 

    Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Edwards, E. J. et al. The origins of C4 grasslands: integrating evolutionary and ecosystem. Science 328, 587–591 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bhat, U., Kempes, C. P. & Yeakel, J. D. Scaling the risk landscape drives optimal life-history strategies and the evolution of grazing. Proc. Natl Acad. Sci. USA 117, 1580–1586 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fagan, W. F. et al. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Merkle, J. A. et al. Spatial memory shapes migration and its benefits: evidence from a large herbivore. Ecol. Lett. 22, 1797–1805 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wcislo, W. T. Behavioral environments and evolutionary change. Annu. Rev. Ecol. Syst. 20, 137–169 (1989).

    Article 

    Google Scholar 

  • Wyles, J. S., Kunkel, J. G. & Wilson, A. C. Birds, behavior, and anatomical evolution. Proc. Natl Acad. Sci. USA 80, 4394–4397 (1983).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yeakel, J. D., Kempes, C. P. & Redner, S. Dynamics of starvation and recovery predict extinction risk and both Damuth’s law and Cope’s rule. Nat. Commun. 9, 657 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Purdon, A., Mole, M. A., Chase, M. J. & van Aarde, R. J. Partial migration in savanna elephant populations distributed across southern Africa. Sci. Rep. 8, 11331 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Faith, J. T., Rowan, J. & Du, A. Early hominins evolved within non-analog ecosystems. Proc. Natl Acad. Sci. USA 116, 21478–21483 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Holdo, R. M. et al. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol. 7, e1000210 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Janzen, D. H. & Martin, P. S. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215, 19–27 (1982).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dantas, V. L. & Pausas, J. G. The legacy of the extinct Neotropical megafauna on plants and biomes. Nat. Commun. 13, 129 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsigt, J. P. G. M. & Berger, J. Global decline in aggregated migrations of large terrestrial mammals. Endanger. Species Res. 7, 55–76 (2009).

    Article 

    Google Scholar 

  • Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alroy, J. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Berger, J. The last mile: how to sustain long-distance migration in mammals. Conserv. Biol. 18, 320–331 (2004).

    Article 

    Google Scholar 

  • Faurby, S. & Svenning, J.-C. Resurrection of the island rule: human-driven extinctions have obscured a basic evolutionary pattern. Am. Nat. 187, 812–820 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).

    Article 

    Google Scholar 

  • Smith, F. A. et al. Body mass of late Quaternary mammals. Ecology 84, 3403 (2003).

    Article 

    Google Scholar 

  • IUCN. IUCN Red List of Threatened Species 2019 (IUCN, 2019).

  • Toljagić, O., Voje, K. L., Matschiner, M., Liow, L. H. & Hansen, T. F. Millions of years behind: slow adaptation of ruminants to grasslands. Syst. Biol. 67, 145–157 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Article 

    Google Scholar 

  • R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).

  • Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 

    Google Scholar 

  • Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).

    PubMed 
    Article 

    Google Scholar 

  • Orme, D. The caper package: Comparative analysis of phylogenetics and evolution in R. R package version 1.0.1 https://cran.r-project.org/web/packages/caper/vignettes/caper.pdf (2018).

  • Beaulieu, J. M. & O’Meara, B. OUwie: Analysis of evolutionary rates in an OU framework. R package version 2.6 https://rdrr.io/cran/OUwie/ (2014).

  • Cressler, C. E., Butler, M. A. & King, A. A. Detecting adaptive evolution in phylogenetic comparative analysis using the Ornstein–Uhlenbeck model. Syst. Biol. 64, 953–968 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).

    PubMed 
    Article 

    Google Scholar 

  • van der Bijl, W. phylopath: easy phylogenetic path analysis in R. PeerJ 6, e4718 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chen, L. et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364, eaav6202 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Invasions of an obligate asexual daphnid species support the nearly neutral theory

    Succession comprises a sequence of threshold-induced community assembly processes towards multidiversity