Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
Google Scholar
Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
Google Scholar
Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H. C. & Davies, S. J. Drought-induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian Amazon. Ecology 98, 2538–2546 (2017).
Google Scholar
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
Google Scholar
Powers, J. S. et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Chang. Biol. 26, 3122–3133 (2020).
Google Scholar
Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl Acad. Sci. USA 118, e2003169118 (2021).
Google Scholar
Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).
Google Scholar
McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, (2020).
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
Google Scholar
Matthews, H. D. et al. An integrated approach to quantifying uncertainties in the remaining carbon budget. Commun. Earth Environ. 2, 7 (2021).
Google Scholar
Girardin, C. A. J. et al. Nature-based solutions can help cool the planet—if we act now. Nature 593, 191–194 (2021).
Google Scholar
Friedlingstein, P. et al. Earth Syst. Sci. Data 14, 1917–2005 (2022)
Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).
Google Scholar
Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).
Google Scholar
Lloyd, J. & Farquhar, G. D. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Phil. Trans. R. Soc. B 363, 1811–1817 (2008).
Google Scholar
O’Sullivan, O. S. et al. Thermal limits of leaf metabolism across biomes. Glob. Chang. Biol. 23, 209–223 (2017).
Google Scholar
Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
Google Scholar
Rifai, S. W., Li, S. & Malhi, Y. Coupling of El Niño events and long-term warming leads to pervasive climate extremes in the terrestrial tropics. Environ. Res. Lett. 14, 105002 (2019).
Google Scholar
Rifai, S. W. et al. ENSO drives interannual variation of forest woody growth across the tropics. Phil. Trans. R. Soc. B 373, 20170410 (2018).
Google Scholar
Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).
Google Scholar
Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).
Google Scholar
McDowell, N., Allen, C. D. & Anderson‐Teixeira, K. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).
Google Scholar
McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).
Google Scholar
Bauman, D. et al. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Glob. Chang. Biol. 28, 1414–1432 (2022).
Google Scholar
Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).
Google Scholar
Anderegg, W. R. L., Anderegg, L. D. L., Kerr, K. L. & Trugman, A. T. Widespread drought-induced tree mortality at dry range edges indicates that climate stress exceeds species’ compensating mechanisms. Glob. Chang. Biol. 25, 3793–3802 (2019).
Google Scholar
Aguirre-Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long-term drought. Ecol. Lett. 22, 855–865 (2019).
Google Scholar
Aguirre-Gutiérrez, J. et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Comm. 11, 3346 (2020).
Google Scholar
Meir, P., Mencuccini, M. & Dewar, R. C. Drought-related tree mortality: addressing the gaps in understanding and prediction. New Phytol. 207, 28–33 (2015).
Google Scholar
Sullivan, M. J. P. et al. Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).
Google Scholar
Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).
Google Scholar
McMahon, S. M., Arellano, G. & Davies, S. J. The importance and challenges of detecting changes in forest mortality rates. Ecosphere 10, e02615 (2019).
Google Scholar
Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).
Google Scholar
Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J. & Stephenson, N. L. Why is tree drought mortality so hard to predict? Trends Ecol. Evol. 36, 520–532 (2021).
Google Scholar
Phillips, O. L. et al. Drought–mortality relationships for tropical forests. New Phytol. 187, 631–646 (2010).
Google Scholar
Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388 (2019).
Google Scholar
Lingenfelder, M. & Newbery, D. M. On the detection of dynamic responses in a drought-perturbed tropical rainforest in Borneo. Plant Ecol. 201, 267–290 (2009).
Google Scholar
McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).
Google Scholar
Zuleta, D. et al. Individual tree damage dominates mortality risk factors across six tropical forests. New Phytol. 233, 705–721 (2022).
Google Scholar
Fontes, C. G. et al. Dry and hot: the hydraulic consequences of a climate change-type drought for Amazonian trees. Phil. Trans. R. Soc. B 373, 20180209 (2018).
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
Google Scholar
Peters, J. M. R. et al. Living on the edge: a continental-scale assessment of forest vulnerability to drought. Glob. Chang. Biol. 27, 3620–3641 (2021).
Google Scholar
Yang, J., Cao, M. & Swenson, N. G. Why functional traits do not predict tree demographic rates. Trends Ecol. Evol. 33, 326–336 (2018).
Google Scholar
Espírito-Santo, F. D. B. et al. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nat. Commun. 5, 3434 (2014).
Google Scholar
Chambers, J. Q. et al. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape. Proc. Natl Acad. Sci. USA 110, 3949–3954 (2013).
Google Scholar
Rifai, S. W. et al. Landscape-scale consequences of differential tree mortality from catastrophic wind disturbance in the Amazon. Ecol. Appl. 26, 2225–2237 (2016).
Google Scholar
López, J., Way, D. A. & Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Chang. Biol. 27, 1704–1720 (2021).
Google Scholar
Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to droughttextendashfire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).
Google Scholar
Phillips, O. L. et al. Pattern and process in Amazon tree turnover, 1976–2001. Phil. Trans. R. Soc. Lond. B 359, 381–407 (2004).
Google Scholar
Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).
Google Scholar
Andrus, R. A., Chai, R. K., Harvey, B. J., Rodman, K. C. & Veblen, T. T. Increasing rates of subalpine tree mortality linked to warmer and drier summers. J. Ecol. 109, 2203–2218 (2021).
Google Scholar
Murphy, H. T., Bradford, M. G., Dalongeville, A., Ford, A. J. & Metcalfe, D. J. No evidence for long-term increases in biomass and stem density in the tropical rain forests of Australia. J. Ecol. 101, 1589–1597 (2013).
Google Scholar
Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).
Google Scholar
Chitra-Tarak, R. et al. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. New Phytol. 231, 1798–1813 (2021).
Google Scholar
Anderegg, W. R. L. et al. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proc. Natl Acad. Sci. USA 113, 5024–5029 (2016).
Google Scholar
Taylor, T. C., Smith, M. N., Slot, M. & Feeley, K. J. The capacity to emit isoprene differentiates the photosynthetic temperature responses of tropical plant species. Plant Cell Environ. 42, 2448–2457 (2019).
Google Scholar
Arellano, G., Zuleta, D. & Davies, S. J. Tree death and damage: a standardized protocol for frequent surveys in tropical forests. J. Veg. Sci. 32, e12981 (2021).
Google Scholar
Bradford, M. G., Murphy, H. T., Ford, A. J., Hogan, D. L. & Metcalfe, D. J. Long-term stem inventory data from tropical rain forest plots in Australia. Ecology 95, 2362 (2014).
Google Scholar
Johnson, D. J. et al. Climate sensitive size-dependent survival in tropical trees. Nat. Ecol. Evol. 2, 1436–1442 (2018).
Google Scholar
Needham, J., Merow, C., Chang-Yang, C.-H., Caswell, H. & McMahon, S. M. Inferring forest fate from demographic data: from vital rates to population dynamic models. Proc. Biol. Sci. 285, 20172050 (2018).
Google Scholar
Lewis, S. L. et al. Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. J. Ecol. 92, 929–944 (2004).
Google Scholar
Reeves, J., Chen, J., Wang, X. L., Lund, R. & Lu, Q. Q. A review and comparison of changepoint detection techniques for climate data. J. Appl. Meteorol. Climatol. 46, 900–915 (2007).
Google Scholar
Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Chang. Biol. 20, 1979–1991 (2014).
Google Scholar
Oliva, J., Stenlid, J. & Martínez-Vilalta, J. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytol. 203, 1028–1035 (2014).
Google Scholar
Franklin, J. F., Shugart, H. H. & Harmon, M. E. Tree death as an ecological process. Bioscience 37, 550–556 (1987).
Google Scholar
Yanoviak, S. P. et al. Lightning is a major cause of large tree mortality in a lowland neotropical forest. New Phytol. 225, 1936–1944 (2020).
Google Scholar
Preisler, Y., Tatarinov, F., Grünzweig, J. M. & Yakir, D. Seeking the ‘point of no return’ in the sequence of events leading to mortality of mature trees. Plant Cell Environ. 44, 1315–1328 (2020).
Google Scholar
Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34, L07701 (2007).
Google Scholar
Malhi, Y. et al. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests. Glob. Chang. Biol. 21, 2283–2295 (2015).
Google Scholar
Hutchinson, M. F., Xu, T., Kesteven, J. L., Marang, I. J. & Evans, B. J.ANUClimate v2.0, NCI Australia. https://doi.org/10.25914/60a10aa56dd1b (2021).
Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).
Google Scholar
Carscadden, K. A. et al. Niche breadth: causes and consequences for ecology, evolution, and conservation. Q. Rev. Biol. 95, 179–214 (2020).
Google Scholar
Swenson, N. G. et al. A reframing of trait–demographic rate analyses for ecology and evolutionary biology. Int. J. Plant Sci. 181, 33–43 (2020).
Google Scholar
Morueta-Holme, N. et al. Habitat area and climate stability determine geographical variation in plant species range sizes. Ecol. Lett. 16, 1446–1454 (2013).
Google Scholar
Brum, M. et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J. Ecol. 107, 318–333 (2019).
Google Scholar
Chitra-Tarak, R. et al. The roots of the drought: hydrology and water uptake strategies mediate forest-wide demographic response to precipitation. J. Ecol. 106, 1495–1507 (2018).
Google Scholar
Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Modell. 275, 73–77 (2014).
Google Scholar
Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).
Google Scholar
Duursma, R. A. Plantecophys—an R package for analysing and modelling leaf gas exchange data. PLoS ONE 10, e0143346 (2015).
Google Scholar
De Kauwe, M. G. et al. A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytol. 210, 1130–1144 (2016).
Google Scholar
Bloomfield, K. J. et al. The validity of optimal leaf traits modelled on environmental conditions. New Phytol. 221, 1409–1423 (2019).
Google Scholar
McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and STAN (CRC Press, 2020).
“RStan: the R interface to Stan.” R package version 2.21.2. http://mc-stan.org/ (Stan Development Team, 2020).
Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
Google Scholar
R Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2021).
Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
Google Scholar
Source: Ecology - nature.com