in

Distance to public transit predicts spatial distribution of dengue virus incidence in Medellín, Colombia

Data

All data was processed and analyzed using R (R Core Team, Version 4.0.3).

Dengue case data were collected and shared by the Alcaldía de Medellín, Secretaría de Salud. In Medellin, dengue case surveillance is conducted by public health institutions that classify and report all cases that meet the WHO clinical dengue case criteria for a probable case to Medellin’s Secretaría de Salud through SIVIGILA (“el Sistema Nacional de Vigilancia en Salud Publica). All case data were de-identified and aggregated to the SIT Zone level.

Human public transit usage and movement data were collected and shared by the Área Metropolitana del Valle de Aburrá for 50–200 respondents per SIT Zone. The “Encuestas Origen Destino” (Origen Destination Surveys) were conducted in 2005, 2011, and 2016 and published in 2006, 2012, and 2017, with survey methods described by the Área Metropolitana del Valle de Aburrá25. Survey respondents include a randomly selected subset of all Medellin residents in each SIT zone regardless of whether they use public transit or not. Survey respondents reported the start and end locations, purpose for travel, and mode of travel for all movement over the last 24 h from the time the survey was administered. Respondents reported all modes of movement, including public transit, private transit, and movement on foot. The results of the survey published in 2017 are published online by the Área Metropolitana del Valle de Aburrá26, and select data are available through the geodata-Medellin open data portal27. The results and data of the survey published in 2012 are not publicly available and were obtained directly from the Área Metropolitana del Valle de Aburrá.

The public transit usage survey data were also used to extract socioeconomic data to the SIT zone; surveyors also reported basic demographic data including household Estrato, which was averaged per SIT zone to estimate zone socioeconomic status. “Estrato” measures socioeconomic status on a scale from 1 (lowest) to 6 (highest). This system is used by the government of Colombia to allocate public services and subsidies (Law 142, 1994). Data from the public transit usage survey were used to extract socioeconomic status data because it is the only location available where the spatial scale of the data matched the spatial scale of the SIT zone.

Data on the location of Medellín public transit lines was downloaded as shape files from the geodata-Medellín open data portal27 and subset for each year to the set of transit lines that was available in that year. Data on the opening date of each Medellín public transit line was taken from the Medellín metro website28.

Because census data at the zone level were not available for this study and only exists for 2005 and 2018, we used population estimates for each year downloaded from the WorldPop project29 and aggregated by SIT zone. The accuracy of WorldPop estimates were checked against available census data for 2005 and 2018 at the comuna level, accessed via the geodata- Medellín open data portal27.

Ethical considerations

No human subjects research was conducted. All data used was de-identified, and the analysis was conducted on a database of cases meeting the clinical criteria for dengue with no intervention or modification of biological, physical, psychological, or social variables. All methods were performed in accordance with the relevant guidelines and regulations.

Data analysis

Quantifying public transit usage and distance from nearest transit line

To quantify public transit usage, we determined if each respondent reported using the metro, metroplus, or ruta alimentadora (supplementary bus route system integrated with the metro system) in the last 24 h. We then calculated the percent of respondents using the public transit system at least once for each SIT zone.

To quantify the distance to the nearest public transit line, we calculated the distance from the center point of each zone to the closest metro, metroplus, tranvía, metrocable, ruta alimentadora, or escalera eléctrica. This was recalculated for each year, including new transit lines that were added within that year.

Spatial autoregressive models of dengue incidence

Dengue incidence per year at the level of the SIT zone was modeled using a fixed effects spatial panel model by maximum likelihood (R package splm30) as described in31. Our fixed effects were socioeconomic status, distance from public transit, a two-way interaction between these factors, and year. To weight dengue cases by population per SIT zone, the model contained a log offset of population per zone per year. Dengue case counts were log transformed after adding one to account for zones with zero dengue cases in a given year. Year was analyzed as a categorical variable to avoid smoothing epidemic years. All continuous variables were scaled to enable comparison of effect size. Because these panel models require balanced data across time, data was truncated to SIT zones that had data for all years available (247 remaining of 291). Spatial dependency was evaluated, and the model was selected using the Hausman specification test and locally robust panel Lagrange Multiplier tests for spatial dependence. Based on a significant Hausman specification test result, which indicates a poor specification of the random effect model, a fixed effect model was chosen. This result is supported by the fact that we had a nearly exhaustive sample of SIT zones in the Medellin metro area. Lagrange multiplier tests were used to determine the most appropriate spatial dependency specifications. Based on the results of the Lagrange multiplier tests, a Spatial Autoregressive (SAR) model was the most appropriate to incorporate spatial dependency; a SAR model considers that the number of dengue cases in a SIT zone depends on the number in neighboring zones.

Because public transit usage was a measurement taken during just two of the study years, we constructed an additional fixed effects spatial panel model by maximum likelihood model of dengue incidence in just 2011 and 2016 that included ridership as an additional predictor variable. Our fixed effects were year, socioeconomic status, distance from public transit, a two-way interaction between socioeconomic status and distance from public transit, percent utilizing public transit, and a two-way interaction between socioeconomic status and percent utilizing public transit. As in our model of all years, the model contained a log offset of population per zone per year and dengue case counts were log transformed after adding one to account for zones with zero dengue cases in a given year, year was analyzed as a categorical variable, and all continuous variables were scaled to enable comparison of effect size. The data was truncated to SIT zones that had data for all years available (251 remaining of 291). We used the same model selection process, and again a fixed effect model was chosen, and based on the results of the Lagrange multiplier tests, a Spatial Autoregressive (SAR) model was determined the most appropriate to incorporate spatial dependency.


Source: Ecology - nature.com

Investigating the benthic megafauna in the eastern Clarion Clipperton Fracture Zone (north-east Pacific) based on distribution models predicted with random forest

Asynchronous recovery of predators and prey conditions resilience to drought in a neotropical ecosystem