Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. U.S.A. 105, 11823–11826. https://doi.org/10.1073/pnas.0802891105 (2008).
Google Scholar
Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104. https://doi.org/10.1371/journal.pbio.2001104 (2016).
Google Scholar
Swinnen, J., Burkitbayeva, S., Schierhorn, F., Prishchepov, A. V. & Müller, D. Production potential in the “bread baskets” of Eastern Europe and Central Asia. Global Food Secur. 14, 38–53. https://doi.org/10.1016/j.gfs.2017.03.005 (2017).
Google Scholar
Henry, R. J. Innovations in plant genetics adapting agriculture to climate change. Curr. Opin. Plant Biol. 56, 168–173. https://doi.org/10.1016/j.pbi.2019.11.004 (2020).
Google Scholar
Stokes, C. & Howden, M. Adapting Agriculture to Climate Change: Preparing Australian Agriculture, Forestry and Fisheries for the Future (Csiro Publishing, 2010).
Google Scholar
Bräutigam, K. et al. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol. Evol. 3, 399–415. https://doi.org/10.1002/ece3.461 (2013).
Google Scholar
Yaish, M. W., Colasanti, J. & Rothstein, S. J. The role of epigenetic processes in controlling flowering time in plants exposed to stress. J. Exp. Bot. 62, 3727–3735. https://doi.org/10.1093/jxb/err177 (2011).
Google Scholar
Yaish, M. W. DNA methylation-associated epigenetic changes in stress tolerance of plants. In Molecular Stress Physiology of Plants (eds Rout, G. R. & Das, A. B.) 427–440 (Springer India, 2013).
Google Scholar
Suji, K. K. & Joel, A. J. An epigenetic change in rice cultivars underwater stress conditions. Electron. J. Plant Breed. 1, 1142–1143 (2010).
Peng, H. & Zhang, J. Plant genomic DNA methylation in response to stresses: Potential applications and challenges in plant breeding. Prog. Nat. Sci. 19, 1037–1045. https://doi.org/10.1016/j.pnsc.2008.10.014 (2009).
Google Scholar
Baduel, P. & Colot, V. The epiallelic potential of transposable elements and its evolutionary significance in plants. Philos. Trans. R. Soc. B 376, 20200123. https://doi.org/10.1098/rstb.2020.0123 (2021).
Google Scholar
Labra, M. et al. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol. 4, 694–699. https://doi.org/10.1055/s-2002-37398 (2002).
Google Scholar
Wang, W.-S. et al. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J. Exp. Bot. 62, 1951–1960. https://doi.org/10.1093/jxb/erq391 (2011).
Google Scholar
Šmarda, P., Bureš, P., Horová, L., Foggi, B. & Rossi, G. Genome size and GC content evolution of Festuca: Ancestral expansion and subsequent reduction. Ann. Bot. 101, 421–433. https://doi.org/10.1093/aob/mcm307 (2008).
Google Scholar
Tomczyk, P. P., Kiedrzyński, M., Jedrzejczyk, I., Rewers, M. & Wasowicz, P. The transferability of microsatellite loci from a homoploid to a polyploid hybrid complex: An example from fine-leaved Festuca species (Poaceae). PeerJ 8, e9227. https://doi.org/10.7717/peerj.9227 (2020).
Google Scholar
Piękoś-Mirkowa, H. & Mirek, Z. Distribution patterns and habitats of endemic vascular plants in the Polish Carpathians. Acta Soc. Bot. Pol. 78, 321–326 (2009).
Google Scholar
Kiedrzyński, M., Zielińska, K. M., Rewicz, A. & Kiedrzyńska, E. Habitat and spatial thinning improve the Maxent models performed with incomplete data. J. Geophys. Res. Biogeosci. 122(6), 1359–1370. https://doi.org/10.1002/2016JG003629 (2017).
Google Scholar
Rewicz, A. et al. Morphometric traits in the fine-leaved fescues depend on ploidy level: The case of Festuca amethystina L. PeerJ 6, e5576. https://doi.org/10.7717/peerj.5576 (2018).
Google Scholar
Kiedrzyński, M. et al. Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L. Sci. Rep. 11, 18735 (2021).
Google Scholar
Mounger, J. et al. Epigenetics and the success of invasive plants. Philos. Trans. R. Soc. B 376, 20200117. https://doi.org/10.1098/rstb.2020.0117 (2021).
Google Scholar
Bewick, A. J. & Schmitz, R. J. Epigenetics in the wild. Elife 4, e07808. https://doi.org/10.7554/eLife.07808 (2015).
Google Scholar
Sahu, P. P. et al. Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep. 32(8), 1151–1159. https://doi.org/10.1007/s00299-013-1462-x (2013).
Google Scholar
Alonso, C. et al. Interspecific variation across angiosperms in global DNA methylation: Phylogeny, ecology and plant features in tropical and Mediterranean communities. New Phytol. 224(2), 949–960. https://doi.org/10.1111/nph.16046 (2019).
Google Scholar
Angers, B., Castonguay, E. & Massicotte, R. Environmentally induced phenotypes and DNA methylation: How to deal with unpredictable conditions until the next generation and after. Mol. Ecol. 19(7), 1283–1295. https://doi.org/10.1111/j.1365-294X.2010.04580.x (2010).
Google Scholar
Batog, J. & Wawro, A. Process of obtaining bioethanol from sorghum biomass using genome shuffling. Cellul. Chem. Technol. 53, 459–467 (2019).
Google Scholar
Richards, C. L., Schrey, A. W. & Pigliucci, M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 15, 1016–1025. https://doi.org/10.1111/j.1461-0248.2012.01824.x (2012).
Google Scholar
Li, N. et al. DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. New Phytol. 223(2), 979–992. https://doi.org/10.1111/nph.15820 (2019).
Google Scholar
Róis, A. S. et al. Epigenetic rather than genetic factors may explain phenotypic divergence between coastal populations of diploid and tetraploid Limonium spp. (Plumbaginaceae) in Portugal. BMC Plant Biol. 13(1), 205. https://doi.org/10.1186/1471-2229-13-205 (2013).
Google Scholar
Li, A. et al. DNA methylation in genomes of several annual herbaceous and woody perennial plants of varying ploidy as detected by MSAP. Plant Mol. Biol. Rep. 29, 784–793. https://doi.org/10.1007/s11105-010-0280-3 (2011).
Google Scholar
Sokolova, D. A., Vengzhen, G. S. & Kravets, A. P. An Analysis of the correlation between the changes in satellite DNA methylation patterns and plant cell responses to the stress. Cell Bio 2, 163–171. https://doi.org/10.4236/cellbio.2013.23018 (2013).
Google Scholar
Johnson, L. I. & Tricker, P. J. Epigenomic plasticity within populations: Its evolutionary significance and potential. Heredity 105, 113–121. https://doi.org/10.1038/hdy.2010.25 (2010).
Google Scholar
Zheng, X. et al. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS One 8(11), e80253. https://doi.org/10.1371/journal.pone.0080253 (2013).
Google Scholar
Karan, R., DeLeon, T., Biradar, H. & Subudhi, P. K. Salt Stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7(6), e40203. https://doi.org/10.1371/journal.pone.0040203 (2012).
Google Scholar
Richards, C. L. & Pigliucci, M. Epigenetic inheritance. A decade into the extended evolutionary synthesis. Paradigmi 38, 463–494. https://doi.org/10.30460/99624 (2020).
Google Scholar
Chelaifa, H., Monnier, A. & Ainouche, M. Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina × townsendii and Spartina anglica (Poaceae). New Phytol. 186(1), 161–174. https://doi.org/10.1111/j.1469-8137.2010.03179.x (2010).
Google Scholar
Al-Lawati, A., Al-Bahry, S., Victor, R., Al-Lawati, A. H. & Yaish, M. W. Salt stress alters DNA methylation levels in alfalfa (Medicago spp.). Genet. Mol. Res. 15, 15018299. https://doi.org/10.4238/gmr.15018299 (2016).
Google Scholar
Lewandowska-Gnatowska, E. et al. Is DNA methylation modulated by wounding-induced oxidative burst in maize?. Plant Physiol. Biochem. 82, 202–208. https://doi.org/10.1016/j.plaphy.2014.06.003 (2014).
Google Scholar
Marfil, C. et al. Changes in grapevine DNA methylation and polyphenols content induced by solar ultraviolet-B radiation, water deficit and abscisic acid spray treatments. Plant Physiol. Biochem. 135, 287–294. https://doi.org/10.1016/j.plaphy.2018.12.021 (2019).
Google Scholar
Zedek, F. et al. Endopolyploidy is a common response to UV-B stress in natural plant populations, but its magnitude may be affected by chromosome type. Ann. Bot. 126(5), 883–889. https://doi.org/10.1093/aob/mcaa109 (2020).
Google Scholar
Pandey, N. & Pandey-Rai, S. Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L. Planta 242(4), 869–879. https://doi.org/10.1007/s00425-015-2323-3 (2015).
Google Scholar
Molinier, J. Genome and epigenome surveillance processes underlying UV exposure in plants. Genes 8(11), 316. https://doi.org/10.3390/genes8110316 (2017).
Google Scholar
Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194. https://doi.org/10.1186/s13059-016-1059-0 (2016).
Google Scholar
Lira-Medeiros, C. F. et al. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5, e10326. https://doi.org/10.1371/journal.pone.0010326 (2010).
Google Scholar
Richards, C. L., Verhoeven, K. J. F. & Bossdorf, O. Evolutionary significance of epigenetic variation. In Plant Genome Diversity Vol. 1 (eds Wendel, J. F. et al.) 257–274 (Springer Vienna, 2012).
Google Scholar
Paun, O. et al. Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol. Biol. Evol. 27, 2465–2473. https://doi.org/10.1093/molbev/msq150 (2010).
Google Scholar
Xie, H. et al. Global DNA methylation patterns can play a role in defining terroir in grapevine (Vitis vinifera cv. Shiraz). Front. Plant Sci. 8, 130398. https://doi.org/10.3389/fpls.2017.01860 (2017).
Google Scholar
Herrera, C. M. & Bazaga, P. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 187(3), 867–876. https://doi.org/10.1111/j.1469-8137.2010.03298.x (2010).
Google Scholar
Portis, E., Acquadro, A., Comino, C. & Lanteri, S. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci. 166, 169–178. https://doi.org/10.1016/j.plantsci.2003.09.004 (2004).
Google Scholar
R Core Team. R: A language and environment for statistical computing. http://www.R-project.org (R Foundation for Statistical Computing, 2013).
Schloerke, B. et al. GGally: Extension to “ggplot2” R package version 2.1.0. https://CRAN.R-project.org/package=GGally (2021).
StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 10. http://www.statsoft.com (2011).
Tomczyk, P. Phenotypic measurement of inbreeding depression in grasses—An overview of traits (Fenotypowe miary depresji wsobnej u traw—przegląd cech). Wiad. Bot. https://doi.org/10.5586/wb.2019.005 (2019).
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 (2017).
Google Scholar
Fox, J. & Weisberg, S. An {R} Companion to Applied Regression (Sage Publications, 2019).
Source: Ecology - nature.com