Shen, S.-Z. et al. A sudden end-Permian mass extinction in South China. GSA Bull. 131(1–2), 205–223. https://doi.org/10.1130/B31909.1 (2019).
Google Scholar
Rampino, M. R. & Caldeira, K. Major perturbation of ocean chemistry and a ‘Strangelove Ocean’ after the end-Permian mass extinction. Terra Nova 17, 554–559. https://doi.org/10.1111/j.1365-3121.2005.00648.x (2005).
Google Scholar
Cascales-Miñana, B. & Cleal, C. The plant fossil record reflects just two great extinction events. Terra Nova 26, 195–200. https://doi.org/10.1111/ter.12086 (2014).
Google Scholar
Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385. https://doi.org/10.1038/s41467-018-07934-z (2019).
Google Scholar
Nowak, H., Schneebeli-Hermann, E. & Kustatscher, E. No mass extinction for land plants at the Permian–Triassic transition. Nat. Commun. 10, 384. https://doi.org/10.1038/s41467-018-07945-w (2019).
Google Scholar
Gastaldo, R. A., Neveling, J., Geissman, J. W., Kamo, S. L. & Looy, C. V. A tale of two Tweefonteins: What physical correlation, geochronology, magnetic polarity stratigraphy, and palynology reveal about the end-Permian terrestrial extinction paradigm in South Africa. GSA Bull. 134, 691–721. https://doi.org/10.1130/B35830.1 (2021).
Google Scholar
Xiong, C. & Wang, Q. Permian–Triassic land-plant diversity in South China: Was there a mass extinction at the Permian/Triassic boundary?. Paleobiology 37(1), 157–167 (2011).
Google Scholar
Feng, Z. et al. From rainforest to herbland: New insights into land plant responses to the end-Permian mass extinction. Earth Sci. Rev. 204, 103153 (2020).
Google Scholar
McLoughlin, S. Glossopteris–insights into the architecture and relationships of an iconic Permian Gondwanan plant. J. Bot. Soc. Bengal 65, 93–106 (2011).
Rigby, J. F. The Gondwana palaeobotanical province at the end of the Palaeozoic. In 24th International Geological Congress (Montreal, 1972). Proceedings, Section 7, 324–330 (International Geological Congress, 1972).
Retallack, G. J. et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 233–251 (2011).
Google Scholar
Looy, C. V., Brugman, W. A., Dilcher, D. L. & Visscher, H. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. PNAS 96, 13857–13862 (1999).
Google Scholar
Gabites, H. I. Triassic paleoecology of the Lashly Formation, Transantarctic Mountains, Antarctica. M.Sc. Thesis, 1–148 (Victoria University of Wellington, New Zealand, 1985).
Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513. https://doi.org/10.1130/B35355.1 (2020).
Google Scholar
Escapa, I. H. et al. Triassic floras of Antarctica: Plant diversity and distribution in high paleolatitude communities. Palaios 26, 522–544 (2011).
Google Scholar
Retallack, G. J. & Krull, E. S. Landscape ecological shift at the Permian–Triassic boundary in Antarctica. Aust. J. Earth Sci. 46, 785–812 (1999).
Google Scholar
Gulbranson, E. L., Cornamusini, G., Ryberg, P. E. & Corti, V. When does large woody debris influence ancient rivers? Dendrochronology applications in the Permian and Triassic, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 541, 109544. https://doi.org/10.1016/j.palaeo.2019.109544 (2020).
Google Scholar
Sheldon, N. D. Abrupt chemical weathering increase across the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 315–321 (2006).
Google Scholar
Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana. Geology https://doi.org/10.1130/G48795.1 (2021).
Google Scholar
Collinson, J. W., Hammer, W. R., Askin, R. A. & Elliot, D. H. Permian–Triassic boundary in the central Transantarctic Mountains, Antarctica. GSA Bull. 118, 747–763 (2006).
Google Scholar
Elliot, D. H., Fanning, C. M., Isbell, J. L. & Hulett, S. R. W. The Permo–Triassic Gondwana sequence, central Transantarctic Mountains, Antarctica: Zircon geochronology, provenance, and basin evolution. Geosphere 13, 155–178 (2017).
Google Scholar
Barbolini, N., Bamford, M. K. & Rubidge, B. Radiometric dating demonstrates that Permian spore-pollen zones of Australia and South Africa are diachronous. Gondwana Res. 37, 241–251 (2016).
Google Scholar
Sidor, C. A., Smith, R. M. H., Huttenlocker, A. K. & Peecook, B. R. New Middle Triassic tetrapods from the Upper Fremouw Formation of Antarctica and their depositional setting. J. Vertebr. Paleontol. 34, 793–801 (2014).
Google Scholar
Hancox, P. J., Neveling, J. & Rubidge, B. S. Biostratigraphy of the Cynognathus Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa. S. Afr. J. Geol. 123, 217–238. https://doi.org/10.25131/sajg.123.0016 (2020).
Google Scholar
Askin, R. A. Permian palynomorphs from southern Victoria Land, Antarctica. Antarct. J. US. 30, 47–48 (1995).
Kyle, R. A. & Schopf, J. M. Permian and Triassic palynostratigraphy of the Victoria Group, Transantarctic Mountains. In Antarctic Geosciences (ed. Craddock, C.) 649–659 (University of Wisconsin Press, 1982).
Fritts, H. C. Tree Rings and Climate (Academic Press, 1976).
Lu, J., Zhang, P., Yang, M., Shao, L. & Hilton, J. Continental records of organic carbon isotopic composition (δ13Corg), weathering, paleoclimate and wildfire linked to the End-Permian Mass Extinction. Chem. Geol. 558, 119764 (2020).
Google Scholar
Yang, J., Cawood, P. A., Du, Y., Feng, B. & Yan, J. Global continental weathering trends across the Early Permian glacial to postglacial transition: correlating high- and low-paleolatitude sedimentary records. Geology 42, 835–838 (2014).
Google Scholar
Panahi, A., Young, G. M. & Rainbird, R. H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim. Cosmochim. Acta 64, 2199–2220 (2000).
Google Scholar
Gulbranson, E. L., Montañez, I. P. & Tabor, N. J. A proxy for humidity and floral province from paleosols. J. Geol. 119, 559–573 (2011).
Google Scholar
Sheldon, N. D., Retallack, G. J. & Tenaka, S. Geochemical climofunctions from North American soils and application to paleosols across the eocene–oligocene boundary in Oregon. J. Geol. 110, 687–696 (2002).
Google Scholar
Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bul. Am. Meteorol. Soc. 79, 61–78 (1998).
Google Scholar
Fielding, C. R. et al. Environmental change in the late Permian of Queensland, NE Australia: The warmup to the end-Permian Extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/j.palaeo.2022.110936 (2022).
Google Scholar
Gulbranson, E. L. et al. Leaf habit of Late Permian Glossopteris trees from high palaeolatitude forests. J. Geol. Soc. 171, 493–507 (2014).
Google Scholar
Ryberg, P. E. Reproductive diversity of Antarctic glossopterid seed ferns. Rev. Palaeobot. Palynol. 158, 167–179 (2009).
Google Scholar
Mays, C. et al. Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction. Nat. Commun. 12, 5511. https://doi.org/10.1038/s41467-021-25711-3 (2021).
Google Scholar
Decombeix, A. L., Bomfleur, B., Taylor, E. L. & Taylor, T. N. New insights into the anatomy, development, and affinities of corystosperm trees from the Triassic of Antarctica. Rev. Palaeobot. Palynol. 203, 22–34 (2014).
Google Scholar
Cui, C. & Cao, C. Increased aridity across the Permian–Triassic transition in the mid-latitude NE Pangea. Geol. J. 56, 6162–6175. https://doi.org/10.1002/gj.4123 (2021).
Google Scholar
Yu, Y., Chu, D., Song, H., Guo, W. & Tong, J. Latest Permian–Early Triassic paleoclimatic reconstruction by sedimentary and isotopic analyses of paleosols from the Schichuanhe section in central North China Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 585, 110726 (2022).
Google Scholar
Rees, P. M. Land-plant diversity and the end-Permian mass extinction. Geology 30, 827–830 (2002).
Google Scholar
Domeier, M. & Torsvik, T. H. Plate tectonics in the late Paleozoic. Geosci. Front. 5, 303–350. https://doi.org/10.1016/j.gsf.2014.01.002 (2014).
Google Scholar
Jasper, A. et al. The burning of Gondwana: Permian fires on the southern continent–a palaeobotanical approach. Gondwana Res. 24, 148–160. https://doi.org/10.1016/j.gr.2012.08.017 (2013).
Google Scholar
Taylor, G. H., Liu, S. Y. & Diessel, C. F. K. The cold climate origin of inertinite-rich Gondwana coals. Int. J. Coal Geol. 11, 1–22 (1989).
Google Scholar
Mays, C. & McLoughlin, S. End-Permian burnout: The role of Permian–Triassic wildfires in extinction, carbon cycling, and environmental change in eastern Gondwana. Palaios https://doi.org/10.2110/palo.2021.051 (2022).
Google Scholar
Corti, V. Palynology and paleobotany of Permo–Triassic Beacon Supergroup at Allan Hills, South Victoria Land, Antarctica: Stratigraphical and paleoenvironmental change implications. Ph.D. Dissertation, 1–186 (Università di Siena, Italy, 2021).
Sheldon, N. D., Chakrabarti, R., Retallack, G. J. & Smith, R. M. H. Contrasting geochemical signatures on land from the Middle to Late Permian extinction events. Sedimentology 61, 1812–1829 (2014).
Google Scholar
Cúneo, N. R., Taylor, E. L., Taylor, T. N. & Krings, M. In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: Paleoenvironmental setting and paleoclimate analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 197, 239–261 (2003).
Google Scholar
Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—An ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).
Google Scholar
Francis, J. E., Woolfe, K. J., Arnott, M. J. & Barrett, P. J. Permian climates of the southern margin of Pangea: Evidence from fossil wood of Antarctica. In Pangea: Global Environments and Resources (eds Embry, A. F. et al.) 275–282 (AAPG Memoir 17, 1994).
Wright, W. E., Baisan, C., Streck, M., Wright, W. W. & Szejner, P. Dendrochronology and middle Miocene petrified oak: Modern counterparts and interpretation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 445, 38–49 (2016).
Google Scholar
Luthardt, L. & Rößler, R. Fossil forest reveals sunspot activity in the early Permian. Geology 45, 279–282 (2017).
Google Scholar
St. George, S. & Telford, R. J. Fossil forest reveals sunspot activity in the Early Permian: COMMENT. Geology 45, 427 (2017).
Google Scholar
Baillie, M. G. L. & Pilcher, J. R. A simple cross-dating program for tree-ring research. Tree Ring Bull. 33, 7–14 (1973).
Hollstein, E. Mitteleuropäische Eichenchronologie, Trierer Grabungen und Forschungen XI, Philip von Zabern (1980).
Bunn, A. G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258. https://doi.org/10.1016/j.dendro.2009.12.001 (2010).
Google Scholar
Buras, A. A comment on the expressed population signal. Dendrochronologia 44, 130–132 (2017).
Google Scholar
Roesch, A. & Schmidbauer, H. WaveletComp Computational Wavelet Analysis https://CRAN.R-project.org/package=WaveletComp. R package version 1.1 (2018).
Source: Ecology - nature.com