in

Metagenomics to characterize sediment microbial biodiversity associated with fishing exposure within the Stellwagen Bank National Marine Sanctuary

  • Pace, N. R. The small things can matter. PLoS Biol. 16(8), e3000009. https://doi.org/10.1371/journal.pbio.3000009 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoshino, T. et al. Global diversity of microbial communities in marine sediment. PNAS 117, 27587–27597 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baker, B. J., Appler, K. E. & Gong, X. New microbial biodiversity in marine sediments. Ann. Rev. Mar. Sci. 13, 161–175. https://doi.org/10.1146/annurev-marine-032020-014552 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Zinger, L. et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6, e24570. https://doi.org/10.1371/journal.pone.0024570 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ward, N. D. et al. Representing the function and sensitivity of coastal interfaces in earth system models. Nat. Commun. 11, 2458 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cook, R., & Auster, P. J. Developing alternatives for optimal representation of seafloor habitats and associated communities in Stellwagen Bank National Marine Sanctuary. Marine Sanctuaries Conservation Series ONMS-06–02. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Silver Spring, MD (2006).

  • Wauchope, H. S. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 3. https://doi.org/10.1016/j.tree.2020.11.001 (2021).

    Article 

    Google Scholar 

  • Stellwagen Bank National Marine Sanctuary (SBNMS) Condition Report. Office of National Marine Sanctuaries National Oceanic and Atmospheric Administration. doi:https://doi.org/10.25923/48ZK-BB07. pp. 1–263. (2020).

  • Grieve, C., Brady, D. C. & Polet, H. Best practices for managing, measuring and mitigating the benthic impacts of fishing—Part 1. Mar. Stewardship Council Sci. Ser. 2, 18–88 (2014).

    Google Scholar 

  • Watling, L. & Norse, E. A. Disturbance of the seafloor by mobile fishing gear: A comparison to forest clear cutting. Conserv. Biol. 12, 1180–1197 (1998).

    Article 

    Google Scholar 

  • Snelgrove, P. V. R. et al. The importance of marine sediment biodiversity in ecosystem processes. Ambio 26, 578–583 (1997).

    Google Scholar 

  • Grassle, J. F. & Maciolek, N. J. Deep-sea species richness: Regional and local diversity estimates from quantitative bottom samples. Am. Nat. 139, 313–341 (1992).

    Article 

    Google Scholar 

  • Polinski, J. M., Bucci, J. P., Gasser, M. & Bodnar, A. G. Targeted metagenomic assessment of biodiversity across prokaryotic and eukaryotic taxa in sediments from the Stellwagen Bank National Marine Sanctuary. Sci. Rep. 9, 14820 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Petro, C. et al. Microbial community assembly in marine sediments. Aquat. Microb. Ecol. 79, 177–195 (2017).

    Article 

    Google Scholar 

  • Cook, R. et al. The substantial first impact of bottom fishing on rare biodiversity hotspots: A dilemma for evidence-based conservation. PLoS ONE 8, e69904 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Grabowski, J. H. et al. Assessing the vulnerability of marine benthos to fishing gear impacts. Rev. Fisheries Sci. Aquacult. 22, 142–155 (2014).

    Article 

    Google Scholar 

  • Silva, T. L. State of the science report: An addendum to the Stellwagen Bank National Marine Sanctuary 2020 Condition Report 1–20 (U.S. Department of Commerce, 2021).

    Google Scholar 

  • Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bech, P. K. et al. Marine sediments hold an untapped potential for novel taxonomic and bioactive bacterial diversity. MSystems 5, e00782-e820 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hou, Z. Geochemical and microbial community attributes in relation to hyporheic zone geological facies. Sci. Rep. 7, 12006 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774 (1998).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Durazzi, F. et al. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci. Rep. 11, 3030 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Asnicar, F. et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun. 11, 2500 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Dance, A. The search for microbial dark matter. Nature 582, 301–303. https://doi.org/10.1038/d41586-020-01684-z (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fishing Restrictions. Magnuson Fishery Conservation and Management Act (MFCMA) (16 U.S.C. Part 1801 et seq.) (1990).

  • Begon, M., Harper, J. L. & Townsend, C. R. Ecology: Individuals, Populations, and Communities 3rd edn. (Blackwell Science Ltd., 1996).

    Book 

    Google Scholar 

  • Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Andrews, S. Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Next Gen. Sequencing Data Anal. 17, 1 (2011).

    Google Scholar 

  • Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2, e104 (2017).

    Article 

    Google Scholar 

  • Wickham, H. ggplot2. WIREs Comput. Stat. 3, 180–185 (2011).

    Article 

    Google Scholar 

  • Breitwieser, F. P. & Salzberg, S. L. Pavian: Interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics 36, 1303–1304 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Wu, Y. W. et al. MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alneberg, J. et al. CONCOCT: Clustering cONtigs on COverage and ComposiTion. ArXiv 1312, 4038 (2013).

    ADS 

    Google Scholar 

  • Kang, D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Parks, D. H. et al. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a web browser. BMC Bioinform. 12, 385 (2011).

    Article 

    Google Scholar 

  • Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Blin, K. et al. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978–3–319–24277–4. (2016).

  • Moon, K. W. Interactive Plot. In Learn ggplot2 Using Shiny App (ed. Moon, K.-W.) 295–347 (Springer International Publishing, 2016).

    Chapter 

    Google Scholar 

  • Oksanen, J., et al. Package ‘vegan’. Community ecology package, version 2, 1-295 (2013).

  • Wilkinson, L. SYSTAT. In Wiley Interdisciplinary Reviews: Computational Statistics, Multidimensional Scaling (eds Wegman, E. & Said, Y. H.) (John Wiley & Sons, New York, 2010).

    Google Scholar 

  • Dexter, E., Rollwagen-Bollens, G. & Bollens, M. The trouble with stress: A flexible method for the evaluation of nonmetric multidimensional scaling. Limnol. Oceanogr. Methods 16, 434–443 (2018).

    Article 

    Google Scholar 

  • Longford, N. T. Longitudinal and time-series analysis. In Studying Human Populations. Springer Texts in Statistics (Springer, 2008). https://doi.org/10.1007/978-0-387-73251-0_11.

    Chapter 
    MATH 

    Google Scholar 

  • NOAA Office of Law Enforcement. Speed-filtered vessel monitoring system (VMS) data from Greater. Atlantic VMS Program (2019).

  • Palmer, M. C., & Wigley, S. E. Validating the stock apportionment of commercial fisheries landings using positional data from vessel monitoring systems (VMS). Northeast Fisheries Science Center Reference Document 07–22. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Science Center, Woods Hole, MA. (2007).

  • Northeastern Regional Association of Coastal Ocean Observing Systems Buoy (NERACOOS) Monitoring Program. Portsmouth, NH. www.neracoos.org (2021).

  • Stroup, W. Generalized Linear Mixed Models: Modern Concepts (Methods and Applications. Taylor & Francis Group, 2013).

    MATH 

    Google Scholar 

  • Ridout, M. S., Hinde, J. P., & Demétrio, C. G. B. “Models for Count Data with Many Zeros,” in Proceedings of the 19th International Biometric Conference, 179–192, Cape Town. (1998).

  • Barnhardt, W. A., Kelley, J. T., Dickson, S. M. & Belknap, D. F. Mapping the Gulf of maine with side-scan sonar: A new bottom-type classification for complex seafloors. J. Coast. Res. 14, 646–659 (1998).

    Google Scholar 

  • Carrier-Belleau, C. et al. Environmental stressors, complex interactions and marine benthic communities’ responses. Sci. Rep. 11, 4194. https://doi.org/10.1038/s41598-021-83533-1 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Auster, P., Joy, K. & Valentine, P. C. Fish species and community distributions as proxies for seafloor habitat distributions: the Stellwagen Bank National Marine Sanctuary example (Northwest Atlantic, Gulf of Maine). Environ. Biol. Fishes 60, 331–346 (2001).

    Article 

    Google Scholar 

  • Solan, M., Raffaelli, D. G., Paterson, D. M., White, P. C. L. & Pierce, G. J. Marine biodiversity and ecosystem function: Empirical approaches and future research needs. Mar. Ecol. Prog. Ser. 311, 175–178 (2006).

    ADS 
    Article 

    Google Scholar 

  • Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dyksma, S. et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 10, 1939–1953 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tuttle, R. N. et al. Detection of natural products and their producers in ocean sediments. Appl. Environ. Microbiol. 85, e02830-e2918 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Heinrichs, L., Aytur, S. A. & Bucci, J. P. Whole metagenomic sequencing to characterize the sediment microbial community within the Stellwagen Bank National Marine Sanctuary and preliminary biosynthetic gene cluster screening of Streptomyces scabrisporus. Mar. Genom. 50, 100718 (2020).

    Article 

    Google Scholar 

  • Belknap, K. C. et al. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci. Rep. 10, 2003. https://doi.org/10.1038/s41598-020-58904-9 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sánchez-Soto Jiménez, M. F., Cerqueda-García, D., Montero-Muñoz, J. L., Aguirre-Macedo, M. L. & García-Maldonado, J. Q. Assessment of the bacterial community structure in shallow and deep sediments of the Perdido Fold Belt region in the Gulf of Mexico. PeerJ 6, e5583. https://doi.org/10.7717/peerj (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 62, 809–812 (2015).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • Pittman, S. J. Relevance of the Northeast Integrated Ecosystem Assessment for the Stellwagen Bank National Marine Sanctuary Condition Report (2007–2018) Marine Sanctuaries Conservation Science Series ONMS-19–08. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Silver Spring, MD. (2019).

  • Bucci, J. P., Szempruch, A. J., Caldwell, J. M., Ellis, C. & Levine, J. F. Seasonal changes in microbial community structure in freshwater stream sediment in a North Carolina River Basin. Diversity 6, 18–32 (2014).

    Article 

    Google Scholar 

  • Won, N. I., Kim, K. H., Kang, J. H., Park, S. R. & Lee, H. J. Exploring the impacts of anthropogenic disturbance on seawater and sediment microbial communities in korean coastal waters using metagenomics analysis. Int. J. Environ. Res. Public Health 14, 130 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zinger, L. et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6(9), e24570 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Auster, P., Lindholm, J., Cramer, A., Nenandovic, M., Prindle, C., & Tamsett, A. The seafloor habitat recovery monitoring project (SHRMP) at Stellwagen Bank National Marine Sanctuary. Final Project Report. (2013b).

  • UN General Assembly, Transforming our world: The 2030 Agenda for Sustainable Development, 21 October, A/RES/70/1, available at: https://www.refworld.org/docid/57b6e3e44.html. (2015).

  • Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioall. Sci. 8, 83–91. https://doi.org/10.4103/0975-7406.171700 (2016).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Carbon impacts

    Comparative screening the life-time composition and crystallinity variation in gilthead seabream otoliths Sparus aurata from different marine environments