in

Reduction of greenhouse gases emission through the use of tiletamine and zolazepam

  • Caycedo-Marulanda, A. & Mathur, S. Suggested strategies to reduce the carbon footprint of anesthetic gases in the operating room. Can. J. Anaesth. J. Can. Anesth. 69, 269–270 (2022).

    CAS 
    Article 

    Google Scholar 

  • World Health Organization. COP24 Special Report Health & Climate Change. https://apps.who.int/iris/bitstream/handle/10665/276405/9786057496713-tur.pdf (2018).

  • Gadani, H. & Vyas, A. Anesthetic gases and global warming: potentials, prevention and future of anesthesia. Anesth. Essays Res. 5, 5 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vollmer, M. K. et al. Modern inhalation anesthetics: potent greenhouse gases in the global atmosphere. Geophys. Res. Lett. 42, 1606–1611 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Sulbaek Andersen, M. P., Nielsen, O. J., Karpichev, B., Wallington, T. J. & Sander, S. P. Atmospheric chemistry of isoflurane, desflurane, and sevoflurane: kinetics and mechanisms of reactions with chlorine atoms and OH radicals and global warming potentials. J. Phys. Chem. A 116, 5806–5820 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Ryan, S. M. & Nielsen, C. J. Global warming potential of inhaled anesthetics: application to clinical use. Anesth. Analg. 111, 92–98 (2010).

    PubMed 
    Article 

    Google Scholar 

  • American Society of Anesthesiologists. Task Force on Environmental Sustainability Committee on Equipment and Facilities. Greening the Operating Room and Perioperative Arena: Environmental Sustainability for Anesthesia Practice. https://www.asahq.org/about-asa/governance-and-committees/asa-committees/committee-on-equipment-and-facilities/environmental-sustainability/greening-the-operating-room#intro (2014).

  • McGain, F., Story, D., Kayak, E., Kashima, Y. & McAlister, S. Workplace sustainability: the “cradle to grave” view of what we do. Anesth. Analg. 114, 1134–1139 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Yasny, J. S. & White, J. Environmental implications of anesthetic gases. Anesth. Prog. 59, 154–158 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Byhahn, C., Wilke, H. J. & Westpphal, K. Occupational exposure to volatile anaesthetics: epidemiology and approaches to reducing the problem. CNS Drugs 15, 197–215 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sherman, J., Le, C., Lamers, V. & Eckelman, M. Life cycle greenhouse gas emissions of anesthetic drugs. Anesth. Analg. 114, 1086–1090 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mankes, R. F. Propofol wastage in anesthesia. Anesth. Analg. 114, 1091–1092 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Weller, M. A general review of the environmental impact of health care, hospitals, operating rooms, and anesthetic care. Int. Anesthesiol. Clin. 58, 64–69 (2020).

    PubMed 
    Article 

    Google Scholar 

  • Dawidowicz, A. L. et al. Investigation of propofol renal elimination by HPLC using supported liquid membrane procedure for sample preparation. Biomed. Chromatogr. BMC 16, 455–458 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Costa, G. L. et al. Influence of ambient temperature and confinement on the chemical immobilization of fallow deer (Dama dama). J Wildl Dis 53, 364–367 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Costa, G. et al. Comparison of tiletamine-zolazepam combined with dexmedetomidine or xylazine for chemical immobilization of wild fallow deer (Dama dama). J. Zoo Wildl. Med. 52, 1009–1012 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Lin, H. C., Thurmon, J. C., Benson, G. J. & Tranquilli, W. J. Telazol: a review of its pharmacology and use in veterinary medicine. J. Vet. Pharmacol. Ther. 16, 383–418 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dixon, W. J. Staircase bioassay: the up-and-down method. Neurosci. Biobehav. Rev. 15, 47–50 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lin, C.-M. et al. Sitting position does not alter minimum alveolar concentration for desflurane. Can. J. Anesth. Can. Anesth. 54, 523–530 (2007).

    Article 

    Google Scholar 

  • Wadhwa, A. & Sessler, D. I. Women have the same desflurane minimum alveolar concentration as men. J. Am. Soc. Anesthesiol. 99, 4 (2003).

    Google Scholar 

  • Monteiro, E. R., Coelho, K., Bressan, T. F., Simões, C. R. & Monteiro, B. S. Effects of acepromazine-morphine and acepromazine-methadone premedication on the minimum alveolar concentration of isoflurane in dogs. Vet. Anaesth. Analg. 43, 27–34 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Campagnol, D., Neto, F. J. T., Giordano, T., Ferreira, T. H. & Monteiro, E. R. Effects of epidural administration of dexmedetomidine on the minimum alveolar concentration of isoflurane in dogs. Am. J. Vet. Res. 68, 1308–1318 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Valverde, A., Morey, T. E., Hernandez, J. & Davies, W. Validation of several types of noxious stimuli for use in determining the minimum alveolar concentration for inhalation anesthetics in dogs and rabbits. Am. J. Vet. Res. 64, 957–962 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Aguado, D., Benito, J. & Gómez de Segura, I. A. Reduction of the minimum alveolar concentration of isoflurane in dogs using a constant rate of infusion of lidocaine–ketamine in combination with either morphine or fentanyl. Vet. J. 189, 63–66 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Muir, W. W. III., Wiese, A. J. & March, P. A. Effects of morphine, lidocaine, ketamine, and morphine-lidocaine-ketamine drug combination on minimum alveolar concentration in dogs anesthetized with isoflurane. Am. J. Vet. Res. 64, 1155–1160 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Dixon, W. J. The up-and-down method for small samples. J. Am. Stat. Assoc. 60, 967–978 (1965).

    MathSciNet 
    Article 

    Google Scholar 

  • Paul, M. & Fisher, D. M. Are estimates of MAC reliable?. Anesthesiology 95, 1362–1370 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sonner, J. M. Issues in the design and interpretation of minimum alveolar anesthetic concentration (MAC) studies. Anesth. Analg. 95, 609–614 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Flecknell, P. et al. Preanesthesia, anesthesia, analgesia, and euthanasia. in Laboratory Animal Medicine 1135–1200 (Elsevier, 2015). https://doi.org/10.1016/B978-0-12-409527-4.00024-9.

  • Grimm, K. A., Lamont, L. A., Tranquilli, W. J., Greene, S. A. & Robertson, S. A. Veterinary Anesthesia and Analgesia (Wiley, 2015).

    Book 

    Google Scholar 

  • Grimm, K. A., Tranquilli, W. J. & Lamont, L. A. Essentials of Small Animal Anesthesia and Analgesia (Wiley, 2011).

    Google Scholar 

  • Hanna, M. & Bryson, G. L. A long way to go: minimizing the carbon footprint from anesthetic gases. Can. J. Anesth. Can. Anesth. 66, 838–839 (2019).

    Article 

    Google Scholar 

  • Andersen, M. P. S., Nielsen, O. J., Wallington, T. J., Karpichev, B. & Sander, S. P. Assessing the impact on global climate from general anesthetic gases. Anesth. Analg. 114, 1081–1085 (2012).

    CAS 
    Article 

    Google Scholar 

  • Ishizawa, Y. General anesthetic gases and the global environment. Anesth. Analg. 112, 213–217 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Brown, A. C., Canosa-Mas, C. E., Parr, A. D., Pierce, J. M. T. & Wayne, R. P. Tropospheric lifetimes of halogenated anaesthetics. Nature 341, 635–637 (1989).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Lucio, L. M. C., Braz, M. G., don Nascimento Junior, P., Braz, J. R. C. & Braz, L. G. Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases. Braz. J. Anesthesiol. Engl. Ed. 68, 33–41 (2018).

    Google Scholar 

  • Waste anesthetic gases-occupational hazards in hospitals. https://www.cdc.gov/niosh/docs/2007-151/ (2007). https://doi.org/10.26616/NIOSHPUB2007151.

  • MacNeill, A. J., Lillywhite, R. & Brown, C. J. The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems. Lancet Planet. Health 1, e381–e388 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Rauchenwald, V. et al. New method of destroying waste anesthetic gases using gas-phase photochemistry. Anesth. Analg. 131, 288–297 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Özelsel, T.J.-P., Sondekoppam, R. V., Ip, V. H. Y. & Tsui, B. C. H. Re-defining the 3R’s (reduce, refine, and replace) of sustainability to minimize the environmental impact of inhalational anesthetic agents. Can. J. Anesth. Can. Anesth. 66, 249–254 (2019).

    Article 

    Google Scholar 

  • Thiel, C. L. et al. Environmental impacts of surgical procedures: life cycle assessment of hysterectomy in the United States. Environ. Sci. Technol. 49, 1779–1786 (2015).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Mastrangelo, G., Comiati, V., dell’Aquila, M. & Zamprogno, E. Exposure to anesthetic gases and Parkinson’s disease: a case report. BMC Neurol. 13, 194 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Casale, T. et al. Anesthetic gases and occupationally exposed workers. Environ. Toxicol. Pharmacol. 37, 267–274 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sharma, A. et al. Should total intravenous anesthesia be used to prevent the occupational waste anesthetic gas exposure of pregnant women in operating rooms?. Anesth. Analg. 128, 188–190 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Hughes, J. M. L. Comparison of disposable circle and ‘to-and-fro’ breathing systems during anaesthesia in dogs. J. Small Anim. Pract. 39, 416–420 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Suttner, S. & Boldt, J. Low-flow anaesthesia: does it have potential pharmacoeconomic consequences?. Pharmacoeconomics 17, 585–590 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Jones, R. S. & West, E. Environmental sustainability in veterinary anaesthesia. Vet. Anaesth. Analg. 46, 409–420 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Feldman, J. M. Managing fresh gas flow to reduce environmental contamination. Anesth. Analg. 114, 1093–1101 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Davies, T. V. S. Low flow anaesthesia: frequently asked questions (2020).

  • Pattanapon, N., Bootcha, R. & Petchdee, S. The effects of anesthetic drug choice on heart rate variability in dogs. J. Adv. Vet. Anim. Res. 5, 485 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hampton, C. E. et al. Effects of intravenous administration of tiletamine-zolazepam, alfaxalone, ketamine-diazepam, and propofol for induction of anesthesia on cardiorespiratory and metabolic variables in healthy dogs before and during anesthesia maintained with isoflurane. Am. J. Vet. Res. 80, 33–44 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ratnu, D. A., Anjana, R. R., Parikh, P. V. & Kelawala, D. N. Effects of tiletamine-zolazepam and isoflurane for induction and maintenance in xylazine premedicated dogs. Indian J. Vet. Sci. Biotechnol. 17, 86–88 (2021).

    CAS 

    Google Scholar 

  • Malavasi, L. M., Jensen-Waern, M., Augustsson, H. & Nyman, G. Changes in minimal alveolar concentration of isoflurane following treatment with medetomidine and tiletamine/zolazepam, epidural morphine or systemic buprenorphine in pigs. Lab. Anim. 42, 62–70 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Malavasi, L. M. et al. Effects of extradural morphine on end-tidal isoflurane concentration and physiological variables in pigs undergoing abdominal surgery: a clinical study. Vet. Anaesth. Analg. 33, 307–312 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Krimins, R. A., Ko, J. C., Weil, A. B., Payton, M. E. & Constable, P. D. Hemodynamic effects in dogs after intramuscular administration of a combination of dexmedetomidine-butorphanol-tiletamine-zolazepam or dexmedetomidine-butorphanol-ketamine. Am. J. Vet. Res. 73, 1363–1370 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nam, S.-W., Shin, B.-J. & Jeong, S. M. Anesthetic and cardiopulmonary effects of butorphanol-tiletamine-zolazepam-medetomidine and tramadol-tiletamine-zolazepam-medetomidine in dogs. J. Vet. Clin. 30(6), 421–427 (2013).

    Google Scholar 

  • Ko, J. C. H., Payton, M., Weil, A. B., Kitao, T. & Haydon, T. Comparison of anesthetic and cardiorespiratory effects of tiletamine–zolazepam–butorphanol and tiletamine–zolazepam–butorphanol– medetomidine in dogs. Vet. Ther. 8, 14 (2007).

    Google Scholar 

  • Grimm, K. A., Tranquilli, W. J., Thurmon, J. C. & Benson, G. J. Duration of nonresponse to noxious stimulation after intramuscular administration of butorphanol, medetomidine, or a butorphanol-medetomidine combination during isoflurane administration in dogs. Am. J. Vet. Res. 61, 42–47 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Carbon impacts

    Comparative screening the life-time composition and crystallinity variation in gilthead seabream otoliths Sparus aurata from different marine environments