in

Expected contraction in the distribution ranges of demersal fish of high economic value in the Mediterranean and European Seas

  • Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).

    Article 

    Google Scholar 

  • Pauly, D. The gill-oxygen limitation theory (GOLT) and its critics. Sci. Adv. 7, 6050 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Miller, D. D., Ota, Y., Sumaila, U. R., Cisneros-Montemayor, A. M. & Cheung, W. W. L. Adaptation strategies to climate change in marine systems. Glob. Change Biol. 24, e1–e14 (2018).

    Article 
    ADS 

    Google Scholar 

  • Chan, F. T. et al. Climate change opens new frontiers for marine species in the Arctic: Current trends and future invasion risks. Glob. Change Biol. 25, 25–38 (2019).

    Article 
    ADS 

    Google Scholar 

  • Cheung, W. W. L. et al. Structural uncertainty in projecting global fisheries catches under climate change. Ecol. Model. 325, 57–66 (2016).

    CAS 
    Article 

    Google Scholar 

  • Pita, I., Mouillot, D., Moullec, F. & Shin, Y. Contrasted patterns in climate change risk for Mediterranean fisheries. Glob. Change Biol. 27, 5920–5933 (2021).

    Article 

    Google Scholar 

  • Tacon, A. G. J. & Metian, M. Fishing for aquaculture: Non-food use of small pelagic forage fish—a global perspective. Rev. Fish. Sci. 17, 305–317 (2009).

    Article 

    Google Scholar 

  • Coll, M., Pennino, M. G., Steenbeek, J., Sole, J. & Bellido, J. M. Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Model. 405, 86–101 (2019).

    Article 

    Google Scholar 

  • Schickele, A. et al. Improving predictions of invasive fish ranges combining functional and ecological traits with environmental suitability under climate change scenarios. Glob. Change Biol. 27, 6086–6102 (2021).

    Article 

    Google Scholar 

  • Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).

    Article 
    ADS 

    Google Scholar 

  • FAO. The State of Mediterranean and Black Sea Fisheries 2020—At a glance. 20 (2020).

  • McGinty, N., Barton, A. D., Finkel, Z. V., Johns, D. G. & Irwin, A. J. Niche conservation in copepods between ocean basins. Ecography https://doi.org/10.1111/ecog.05690 (2021).

    Article 

    Google Scholar 

  • Dormann, C. F. et al. Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Glob. Ecol. Biogeogr. 27, 1004–1016 (2018).

    Article 

    Google Scholar 

  • Hannemann, H., Willis, K. J. & Macias-Fauria, M. The devil is in the detail: unstable response functions in species distribution models challenge bulk ensemble modelling: Unstable response functions in SDMs. Glob. Ecol. Biogeogr. 25, 26–35 (2016).

    Article 

    Google Scholar 

  • Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Chang. 9, 237–243 (2019).

    Article 
    ADS 

    Google Scholar 

  • Lasram, B. R. et al. An open-source framework to model present and future marine species distributions at local scale. Ecol. Inform. 59, 101130 (2020).

    Article 

    Google Scholar 

  • Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, 4858 (2019).

    Article 
    ADS 

    Google Scholar 

  • Schickele, A. et al. European small pelagic fish distribution under global change scenarios. Fish Fish 22, 212–225 (2021).

    Article 

    Google Scholar 

  • Duarte, R., Azevedo, M., Landa, J. & Pereda, P. Reproduction of angler®sh (Lophius budegassa Spinola and Lophius piscatorius Linnaeus) from the Atlantic Iberian coast. Fish. Res. 13, 2 (2001).

    Google Scholar 

  • Nunes, P., Svensson, L. & Markandya, A. Handbook on the Economics and Management of Sustainable Oceans (Edward Elgar Publishing, 2017).

    Book 

    Google Scholar 

  • Schickele, A. et al. Modelling European small pelagic fish distribution: Methodological insights. Ecol. Model. 416, 108902 (2020).

    Article 

    Google Scholar 

  • Cheung, W. W. L., Jones, M. C., Reygondeau, G. & Frölicher, T. L. Opportunities for climate-risk reduction through effective fisheries management. Glob. Change Biol. 24, 5149–5163 (2018).

    Article 
    ADS 

    Google Scholar 

  • Bossier, S. et al. The Baltic Sea Atlantis: An integrated end-to-end modelling framework evaluating ecosystem-wide effects of human-induced pressures. PLoS ONE 13, e0199168 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Valle, C., Bayle-Sempere, J. T., Dempster, T., Sanchez-Jerez, P. & Giménez-Casalduero, F. Temporal variability of wild fish assemblages associated with a sea-cage fish farm in the south-western Mediterranean Sea. Estuar. Coast. Shelf Sci. 72, 299–307 (2007).

    Article 
    ADS 

    Google Scholar 

  • Madurell, T., Cartes, J. E. & Labropoulou, M. Changes in the structure of fish assemblages in a bathyal site of the Ionian Sea (eastern Mediterranean). Fish. Res. 66, 245–260 (2004).

    Article 

    Google Scholar 

  • Volkoff, H. & Rønnestad, I. Effects of temperature on feeding and digestive processes in fish. Temperature 7, 307–320 (2020).

    Article 

    Google Scholar 

  • Rutterford, L. A. et al. Future fish distributions constrained by depth in warming seas. Nat. Clim. Change 5, 569–573 (2015).

    Article 
    ADS 

    Google Scholar 

  • Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Conti, L. & Scardi, M. Fisheries yield and primary productivity in large marine ecosystems. Mar. Ecol. Prog. Ser. 410, 233–244 (2010).

    Article 
    ADS 

    Google Scholar 

  • Chérif, M. et al. Food and feeding habits of the red mullet, <I>Mullus barbatus</I> (Actinopterygii: Perciformes: Mullidae), off the northern Tunisian coast (central Mediterranean). Acta Icth et Piscat 41, 109–116 (2011).

    Article 

    Google Scholar 

  • Mellon-Duval, C. et al. Trophic ecology of the European hake in the Gulf of Lions, northwestern Mediterranean Sea. Sci. Mar. 81, 7 (2017).

    Article 

    Google Scholar 

  • Steingrund, P. & Gaard, E. Relationship between phytoplankton production and cod production on the Faroe Shelf. ICES J. Mar. Sci. 62, 163–176 (2005).

    Article 

    Google Scholar 

  • Friedland, K. D. et al. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE 7, e28945 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75, 1259–1268 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Vasilakopoulos, P., Raitsos, D. E., Tzanatos, E. & Maravelias, C. D. Resilience and regime shifts in a marine biodiversity hotspot. Sci. Rep. 7, 13647 (2017).

    PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 

  • Issifu, I., Alava, J. J., Lam, V. W. Y. & Sumaila, U. R. Impact of ocean warming, overfishing and mercury on European fisheries: A risk assessment and policy solution framework. Front. Mar. Sci. 8, 770805 (2022).

    Article 

    Google Scholar 

  • Lima, A. R. A. et al. Forecasting shifts in habitat suitability across the distribution range of a temperate small pelagic fish under different scenarios of climate change. Sci. Total Environ. 804, 150167 (2022).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • Sumaila, U. R. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, 3855 (2019).

    Article 
    ADS 

    Google Scholar 

  • Holsman, K. K. et al. Ecosystem-based fisheries management forestalls climate-driven collapse. Nat. Commun. 11, 4579 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Sumaila, U. R. & Tai, T. C. End overfishing and increase the resilience of the ocean to climate change. Front. Mar. Sci. 7, 523 (2020).

    Article 

    Google Scholar 

  • Lindegren, M. & Brander, K. Adapting fisheries and their management to climate change: A review of concepts, tools, frameworks, and current progress toward implementation. Rev. Fish. Sci. Aquacult. 26, 400–415 (2018).

    Article 

    Google Scholar 

  • Demirel, N., Zengin, M. & Ulman, A. First large-scale eastern mediterranean and black sea stock assessment reveals a dramatic decline. Front. Mar. Sci. 7, 103 (2020).

    Article 

    Google Scholar 

  • Weiss, C. V. C. et al. Climate change effects on marine renewable energy resources and environmental conditions for offshore aquaculture in Europe. ICES J. Mar. Sci. 77, 3168–3182 (2020).

    Article 

    Google Scholar 

  • Cascarano, M. C. et al. Mediterranean aquaculture in a changing climate: temperature effects on pathogens and diseases of three farmed fish species. Pathogens 10, 1205 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kleitou, P. et al. Fishery reforms for the management of non-indigenous species. J. Environ. Manag. 280, 111690 (2021).

    Article 

    Google Scholar 

  • Hamida, B.-B. & O, Ben Hadj Hamida N, Chaouch H, Missaoui H,. Allometry, condition factor and growth of the swimming blue crab Portunus segnis in the Gulf of Gabes, Southeastern Tunisia (Central Mediterranean). Medit. Mar. Sci. 20, 566 (2019).

    Article 

    Google Scholar 

  • Wisz, M. S. et al. Reply to ‘Sources of uncertainties in cod distribution models’. Nat. Clim. Change 5, 790–791 (2015).

    Article 
    ADS 

    Google Scholar 

  • Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).

    Article 

    Google Scholar 

  • Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).

    Article 
    ADS 

    Google Scholar 

  • Hao, T., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 43, 549–558 (2020).

    Article 

    Google Scholar 

  • Thuiller, W., Damie, G., Robin, E., Frank, F.Biomod2: Ensemble Platform for Species Distribution Modeling (2016).

  • Stolar, J. & Nielsen, S. E. Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers. Distrib. 21, 595–608 (2015).

    Article 

    Google Scholar 

  • Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158 (1999).

    Article 

    Google Scholar 

  • Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87(6), 1465–1471 (2003).

    Article 

    Google Scholar 

  • Hengl, T., Sierdsema, H., Radović, A. & Dilo, A. Spatial prediction of species’ distributions from occurrence-only records: Combining point pattern analysis ENFA and regression-kriging. Ecol. Modell. 220, 3499–3511 (2009).

    Article 

    Google Scholar 

  • Faillettaz, R., Beaugrand, G., Goberville, E. & Kirby, R. R. Atlantic Multidecadal Oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Sci. Adv. 5, eaar6993 (2019).

  • Lavoie, D., Lambert, N. & Gilbert, D. Projections of future trends in biogeochemical conditions in the northwest Atlantic using CMIP5 earth system models. Atmos. Ocean 57, 18–40 (2019).

    CAS 
    Article 

    Google Scholar 

  • Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106, 7183–7192 (2001).

    Article 
    ADS 

    Google Scholar 

  • Cristofari, R. et al. Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat. Clim. Change 8, 245–251 (2018).

    Article 
    ADS 

    Google Scholar 

  • Zeller, D. et al. Still catching attention: Sea Around Us reconstructed global catch data, their spatial expression and public accessibility. Mar. Policy 70, 145–152 (2016).

    Article 

    Google Scholar 

  • GBIF.org (27 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.2crvdp

  • GBIF.org (7 June 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.y8ujd7

  • GBIF.org (7 June 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.hs8py7

  • GBIF.org (7 June 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.kqwq3a

  • GBIF.org (14 July 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.raka7j

  • GBIF.org (14 July 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.fwbk43

  • GBIF.org (30 July 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.845mcw

  • GBIF.org (30 July 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.wdavbr

  • GBIF.org (11 September 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.ucuavw


  • Source: Ecology - nature.com

    Evan Leppink: Seeking a way to better stabilize the fusion environment

    Characterization of triatomine bloodmeal sources using direct Sanger sequencing and amplicon deep sequencing methods