Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301(5635), 929–933 (2003).
Google Scholar
Hoegh-Guldberg, O. E. et al. Coral reefs under rapid climate change and ocean acidification. Science 318(5857), 1737–1742 (2007).
Google Scholar
Soares, M. et al. The flourishing and vulnerabilities of zoantharians on Southwestern Atlantic reefs. Mar. Environ. Res. 173(3), 105535 (2021).
Ban, N. C. et al. Designing, implementing and managing marine protected areas: Emerging trends and opportunities for coral reef nations. J. Exp. Mar. Biol. Ecol. 408(1–2), 21–31 (2011).
Google Scholar
Magris, R. A., Pressey, R. L., Mills, M., Vila-Nova, D. A. & Floeter, S. Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation. Glob. Ecol. Conserv. 11, 53–68 (2017).
Google Scholar
Vercammen, A. et al. Evaluating the impact of accounting for coral cover in large-scale marine conservation prioritizations. Divers. Distrib. 25(10), 1564–1574 (2019).
Google Scholar
Giakoumi, S., Grantham, H. S., Kokkoris, G. D. & Possingham, H. P. Designing a network of marine reserves in the Mediterranean Sea with limited socio-economic data. Biol. Conserv. 144(2), 753–763 (2011).
Google Scholar
Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543(7647), 665–669 (2017).
Google Scholar
Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27(2), 198–215 (2021).
Google Scholar
Day, J. C. Zoning—lessons from the Great Barrier Reef marine park. Ocean Coast. Manag. 45(2–3), 139–156 (2002).
Google Scholar
Agardy, T. Ocean Zoning: Making Marine Management More Effective (Earthscan, 2010).
Makino, A., Klein, C. J., Beger, M., Jupiter, S. D. & Possingham, H. P. Incorporating conservation zone effectiveness for protecting biodiversity in marine planning. PLoS ONE 8(11), e78986 (2013).
Google Scholar
Villa, F., Tunesi, L. & Agardy, T. Zoning marine protected areas through spatial multiple-criteria analysis: The case of the Asinara Island National Marine Reserve of Italy. Conserv. Biol. 16(2), 515–526 (2002).
Google Scholar
Muhl, E. K., Esteves Dias, A. C. & Armitage, D. Experiences with governance in three marine conservation zoning initiatives: Parameters for assessment and pathways forward. Front. Mar. Sci. 7, 629 (2020).
Google Scholar
Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6(1), 1–8 (2015).
Google Scholar
Ban, N. C. et al. A social–ecological approach to conservation planning: Embedding social considerations. Front. Ecol. Environ. 11(4), 194–202 (2013).
Google Scholar
Teh, L. C., Teh, L. S. & Jumin, R. Combining human preference and biodiversity priorities for marine protected area site selection in Sabah, Malaysia. Biol. Conserv. 167, 396–404 (2013).
Google Scholar
Sarker, S., Rahman, M. M., Yadav, A. K. & Islam, M. M. Zoning of marine protected areas for biodiversity conservation in Bangladesh through socio-spatial data. Ocean Coast. Manag. 173, 114–122 (2019).
Google Scholar
Day, J. C., Kenchington, R. A., Tanzer, J. M. & Cameron, D. S. Marine zoning revisited: How decades of zoning the Great Barrier Reef has evolved as an effective spatial planning approach for marine ecosystem-based management. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 9–32 (2019).
Google Scholar
Claudet, J. et al. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130(3), 349–369 (2006).
Google Scholar
Emslie, M. J. et al. Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Curr. Biol. 25(8), 983–992 (2015).
Google Scholar
McClure, E. C. et al. Higher fish biomass inside than outside marine protected areas despite typhoon impacts in a complex reefscape. Biol. Cons. 241, 108354 (2020).
Google Scholar
Bender, M. G. et al. Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the Southwestern Atlantic. PLoS ONE 9(10), e110332 (2014).
Google Scholar
Hamilton, R. J. et al. Hyperstability masks declines in bumphead parrotfish (Bolbometopon muricatum) populations. Coral Reefs 35(3), 751–763 (2016).
Google Scholar
Pereira, P. H. C., Ternes, M. L. F., Nunes, J. A. C. & Giglio, V. J. Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): Evidence from fishers’ knowledge. Biol. Conserv. 254, 108940 (2021).
Google Scholar
Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311(5757), 98–101 (2006).
Google Scholar
Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5(1), e8657 (2010).
Google Scholar
Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12(4), e12638 (2019).
Google Scholar
Liu, C., White, M. & Newell, G. Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34(2), 232–243 (2011).
Google Scholar
Miranda, R. J. et al. Integrating long term ecological research (LTER) and marine protected area management: Challenges and solutions. Oecol. Aust. 24(2), 279–300 (2020).
Google Scholar
ICMBIO. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais. ICMBio/MMA (2021).
Jones, K. R. et al. Area requirements to safeguard Earth’s marine species. One Earth 2(2), 188–196 (2020).
Google Scholar
Figueiredo, M. S. & Grelle, C. E. V. Predicting global abundance of a threatened species from its occurrence: Implications for conservation planning. Divers. Distrib. 15(1), 117–121 (2009).
Google Scholar
Pearce, J. & Ferrier, S. The practical value of modelling relative abundance of species for regional conservation planning: A case study. Biol. Conserv. 98(1), 33–43 (2001).
Google Scholar
Ferreira, H. M., Magris, R. A., Floeter, S. R. & Ferreira, C. E. Drivers of ecological effectiveness of marine protected areas: A meta-analytic approach from the Southwestern Atlantic Ocean (Brazil). J. Environ. Manag. 301, 113889 (2021).
Google Scholar
Mills, M. et al. Real-world progress in overcoming the challenges of adaptive spatial planning in marine protected areas. Biol. Conserv. 181, 54–63 (2015).
Google Scholar
Bennett, N. J. et al. Local support for conservation is associated with perceptions of good governance, social impacts, and ecological effectiveness. Conserv. Lett. 12(4), e12640 (2019).
Google Scholar
Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30(1), 133–141 (2016).
Google Scholar
Emslie, M. J. et al. Decades of monitoring have informed the stewardship and ecological understanding of Australia’s Great Barrier Reef. Biol. Conserv. 252, 108854 (2020).
Google Scholar
Gerhardinger, L. C., Godoy, E. A., Jones, P. J., Sales, G. & Ferreira, B. P. Marine protected dramas: The flaws of the Brazilian national system of marine protected areas. Environ. Manag. 47(4), 630–643 (2011).
Google Scholar
Oliveira, E. A., Martelli, H., Silva, A. C. S. E., Martelli, D. R. B. & Oliveira, M. C. L. Science funding crisis in Brazil and COVID-19: Deleterious impact on scientific output. Anais Acad. Bras. Ciênc. 92, 1–2 (2020).
Floeter, S. R., Halpern, B. S. & Ferreira, C. E. L. Effects of fishing and protection on Brazilian reef fishes. Biol. Conserv. 128(3), 391–402 (2006).
Google Scholar
Bender, M. G., Floeter, S. R. & Hanazaki, N. Do traditional fishers recognise reef fish species declines? Shifting environmental baselines in E astern B razil. Fish. Manag. Ecol. 20(1), 58–67 (2013).
Google Scholar
Hoey, A. S. & Bonaldo, R. M. (eds) Biology of Parrotfishes (CRC Press, Boca Raton, 2018).
Frédou, T. & Ferreira, B. P. Bathymetric trends of Northeastern Brazilian snappers (Pisces, Lutjanidae): Implications for the reef fishery dynamic. Braz. Arch. Biol. Technol. 48(5), 787–800 (2005).
Google Scholar
Guerra, A. S. Wolves of the Sea: Managing human-wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).
Google Scholar
Hawkins, J. P. & Roberts, C. M. Effects of fishing on sex-changing Caribbean parrotfishes. Biol. Cons. 115(2), 213–226 (2004).
Google Scholar
Tuya, F. et al. Effect of fishing pressure on the spatio-temporal variability of the parrotfish, Sparisoma cretense (Pisces: Scaridae), across the Canarian Archipelago (eastern Atlantic). Fish. Res. 7(1), 24–33 (2006).
Google Scholar
Steneck, R. S., Arnold, S. N. & Mumby, P. J. Experiment mimics fishing on parrotfish: Insights on coral reef recovery and alternative attractors. Mar. Ecol. Prog. Ser. 506, 115–127 (2014).
Google Scholar
Taylor, B. M., Trip, E. D., & Choat, J. H. Dynamic demography: Investigations of life-history variation in the parrotfishes. In Biology of Parrotfishes 69–98 (CRC Press, 2018).
Moura, R. L. & Francini-Filho, R. B. Reef and Shore Fishes of the Abrolhos Region, Brazil Vol. 38, 40–55 (RAP Bulletin of Biological Assessment, Washington, 2005).
Francini-Filho, R. B., Moura, R. L., Ferreira, C. M. & Coni, E. O. Live coral predation by parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on the classification of species into functional groups. Neotrop. Ichthyol. 6, 191–200 (2008).
Google Scholar
Freitas, M. O. et al. Age, growth, reproduction and management of Southwestern Atlantic’s largest and endangered herbivorous reef fish, Scarus trispinosus Valenciennes, 1840. PeerJ 7, e7459 (2019).
Google Scholar
Pinheiro, H. T. et al. An inverted management strategy for the fishery of endangered marine species. Front. Mar. Sci. 8, 172 (2021).
Google Scholar
Correia, M. D. Scleractinian corals (Cnidaria: Anthozoa) from reef ecosystems on the Alagoas coast, Brazil. J. Mar. Biol. Assoc. U. K. 91, 659–668 (2011).
Google Scholar
Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A. & Sarubbo, L. A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17(3), 401 (2016).
Google Scholar
de Oliveira, S. et al. Oil spill in South Atlantic (Brazil): Environmental and governmental disaster. Mar. Policy 115, 103879 (2020).
Google Scholar
Teixeira, L. M. P. & Creed, J. C. A decade on: An updated assessment of the status of marine non-indigenous species in Brazil. Aquat. Invasions 15(1), 30–43 (2020).
Google Scholar
Braga, M. D. A. et al. Retirement risks: Invasive coral on old oil platform on the Brazilian equatorial continental shelf. Mar. Pollut. Bull. 165, 112156 (2021).
Google Scholar
Luiz, O. J. et al. Multiple lionfish (Pterois spp.) new occurrences along the Brazilian coast confirm the invasion pathway into the Southwestern Atlantic. Biol. Invasions 23, 3013–3019 (2021).
Google Scholar
Maida, M., & Ferreira, B. P. Coral reefs of Brazil: An overview. In Proceedings of the 8th International Coral Reef Symposium, Vol. 1, 263–274 (Smithsonian Tropical Research Institute Panamá, 1997).
Pereira, P. H. C., Macedo, C. H., Nunes, J. D. A. C., Marangoni, L. F. D. B. & Bianchini, A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS ONE 13(9), e0203072 (2018).
Google Scholar
ICMBIO. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais (ICMBio/MMA, 2013).
Hill, J. & Wilkinson, C. E. Methods for Ecological Monitoring of Coral Reefs Vol. 117 (Australian Institute of Marine Science, Townsville, 2004).
Dalapicolla, J. Tutorial de modelos de distribuição de espécies: guia prático usando o MaxEnt e o ArcGIS 10. Laboratório de Mastozoologia e Biogeografia. Universidade Federal do Espírito Santo, Vitória. Retrieved, 6 (2016).
Phillips, S. J., Dudík, M., & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine learning, Vol. 83 (2004).
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).
Google Scholar
Anderson, R. P. & Martınez-Meyer, E. Modeling species’ geographic distributions for preliminary conservation assessments: An implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol. Conserv. 116(2), 167–179 (2004).
Google Scholar
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40(7), 887–893 (2017).
Google Scholar
Rodrigues, E. D. C., Rodrigues, F. A., Rocha, R. L. A. & Corrêa, P. L. P. An adaptive maximum entropy approach for modeling of species distribution. Mem. WTA 108–117 (2010).
Rodrigues, E. S. D. C., Rodrigues, F. A., Ricardo, L. D. A., Corrêa, P. L. & Giannini, T. C. Evaluation of different aspects of maximum entropy for niche-based modeling. Procedia Environ. Sci. 2, 990–1001 (2010).
Google Scholar
Hattab, T. et al. The use of a predictive habitat model and a fuzzy logic approach for marine management and planning. PLoS ONE 8(10), e76430 (2013).
Google Scholar
Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: A comprehensive approach to model complexity. Ecography 41(5), 726–736 (2018).
Google Scholar
Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).
Google Scholar
Perkins-Taylor, I. E. & Frey, J. K. Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): Comparing MaxEnt and occupancy models. J. Mammal. 101(4), 1035–1048 (2020).
Google Scholar
Lee, C. M., Lee, D. S., Kwon, T. S., Athar, M. & Park, Y. S. Predicting the global distribution of Solenopsis geminata (Hymenoptera: Formicidae) under climate change using the MaxEnt model. Insects 12(3), 229 (2021).
Google Scholar
Possingham, H., Ball, I. & Andelman, S. Mathematical methods for identifying representative reserve networks. In Quantitative methods for conservation biology 291–306 (Springer, New York, 2000).
Terrell, G. R. & Scott, D. W. Variable kernel density estimation. Ann. Stat. 20(3), 1236–1265 (1992).
O’Brien, S. H., Webb, A., Brewer, M. J. & Reid, J. B. Use of kernel density estimation and maximum curvature to set Marine Protected Area boundaries: Identifying a Special Protection Area for wintering red-throated divers in the UK. Biol. Conserv. 156, 15–21 (2012).
Google Scholar
Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).
Google Scholar
Source: Ecology - nature.com