Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742. https://doi.org/10.1126/science.1152509 (2007).
Google Scholar
Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933. https://doi.org/10.1126/science.1085046 (2003).
Google Scholar
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).
Google Scholar
Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne‘ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950. https://doi.org/10.7717/peerj.950 (2015).
Google Scholar
Montilla, L. M., Ascanio, A., Verde, A. & Croquer, A. Systematic review and meta-analysis of 50 years of coral disease research visualized through the scope of network theory. PeerJ 7, e7041. https://doi.org/10.7717/peerj.7041 (2019).
Google Scholar
Williams, S. D., Walter, C. S. & Muller, E. M. Fine Scale temporal and spatial dynamics of the stony coral tissue loss disease outbreak within the lower Florida keys. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.631776 (2021).
Google Scholar
Harrison, P. L. in Coral Reefs: An Ecosystem in Transition (eds Zvy Dubinsky & Noga Stambler) 59–85 (Springer Netherlands, 2011).
Richmond, R. H. & Hunter, C. L. Reproduction and recruitment of corals: comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Mar. Ecol. Prog. Ser. 60, 185–203 (1990).
Google Scholar
Humphrey, C., Weber, M., Lott, C., Cooper, T. & Fabricius, K. Effects of suspended sediments, dissolved inorganic nutrients and salinity on fertilisation and embryo development in the coral Acropora millepora (Ehrenberg, 1834). Coral Reefs 27, 837–850. https://doi.org/10.1007/s00338-008-0408-1 (2008).
Google Scholar
Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).
Google Scholar
Ayalon, I. et al. Coral gametogenesis collapse under artificial light pollution. Curr. Biol. 31, 413-419.e413. https://doi.org/10.1016/j.cub.2020.10.039 (2021).
Google Scholar
Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224. https://doi.org/10.1007/BF00265014 (1990).
Google Scholar
Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876. https://doi.org/10.1007/s00338-019-01817-5 (2019).
Google Scholar
Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390. https://doi.org/10.1038/s41586-019-1081-y (2019).
Google Scholar
Barfield, S., Aglyamova, G. V. & Matz, M. V. Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa). Proc. Biol. Sci. https://doi.org/10.1098/rspb.2015.2128 (2016).
Google Scholar
Highsmith, R. C. Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7, 207–226 (1982).
Google Scholar
Baums, I. B. A restoration genetics guide for coral reef conservation. Mol. Ecol. 17, 2796–2811. https://doi.org/10.1111/j.1365-294X.2008.03787.x (2008).
Google Scholar
Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394. https://doi.org/10.1007/BF00428562 (1986).
Google Scholar
Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40, 551–571. https://doi.org/10.1146/annurev.ecolsys.110308.120220 (2009).
Google Scholar
Levitan, D. R. & Petersen, C. Sperm limitation in the sea. Trends Ecol. Evol. 10, 228–231. https://doi.org/10.1016/S0169-5347(00)89071-0 (1995).
Google Scholar
Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15, 10–13. https://doi.org/10.1016/S0169-5347(99)01744-9 (2000).
Google Scholar
Bouwmeester, J. et al. Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea. Coral Reefs 34, 65–77. https://doi.org/10.1007/s00338-014-1214-6 (2015).
Google Scholar
Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Reproductive seasonality in an equatorial assemblage of scleractinian corals. Coral Reefs 24, 112–116. https://doi.org/10.1007/s00338-004-0433-7 (2005).
Google Scholar
Chelliah, A. et al. First record of multi-species synchronous coral spawning from Malaysia. PeerJ 3, e777. https://doi.org/10.7717/peerj.777 (2015).
Google Scholar
Hunter, C. L. in Proceedings of the 6th International Coral Reef Symposium Vol. 2, 727–732 (1988).
Jokiel, P. L., Ito, R. Y. & Liu, P. M. Night irradiance and synchronization of lunar release of planula larvae in the reef coral Pocillopora damicornis. Mar. Biol. 88, 167–174. https://doi.org/10.1007/BF00397164 (1985).
Google Scholar
Willis, B. L., Babcock, R. C., Harrison, P. L., Oliver, J. K. & Wallace, C. C. in Proceedings of the 5th International Coral Reef Congress Vol. 4, 343–348 (1985).
Brady, A. K., Hilton, J. D. & Vize, P. D. Coral spawn timing is a direct response to solar light cycles and is not an entrained circadian response. Coral Reefs 28, 677–680. https://doi.org/10.1007/s00338-009-0498-4 (2009).
Google Scholar
Mendes, J. M. & Woodley, J. D. Timing of reproduction in Montastraea annularis: relationship to environmental variables. Mar. Ecol. Prog. Ser. 227, 241–251. https://doi.org/10.3354/meps227241 (2002).
Google Scholar
van Woesik, R. Calm before the spawn: global coral spawning patterns are explained by regional wind fields. Proc. Biol. Sci. 277, 715–722. https://doi.org/10.1098/rspb.2009.1524 (2010).
Google Scholar
Twan, W.-H. et al. Hormones and reproduction in scleractinian corals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 144, 247–253. https://doi.org/10.1016/j.cbpa.2006.01.011 (2006).
Google Scholar
Tan, E. S., Izumi, R., Takeuchi, Y., Isomura, N. & Takemura, A. Molecular approaches underlying the oogenic cycle of the scleractinian coral, Acropora tenuis. Sci. Rep. 10, 9914. https://doi.org/10.1038/s41598-020-66020-x (2020).
Google Scholar
Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141. https://doi.org/10.3354/meps237133 (2002).
Google Scholar
Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10. https://doi.org/10.2307/24894795 (2014).
Google Scholar
Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. https://doi.org/10.1071/rd15526 (2016).
Google Scholar
Ward, S., Harrison, P. L. & Hoegh-Guldberg, O. in Proceedings of the Ninth International Coral Reef Symposium Vol. 2, 1123–1128 (2002).
Lager, C. V. A., Hagedorn, M., Rodgers, K. S. & Jokiel, P. L. The impact of short-term exposure to near shore stressors on the early life stages of the reef building coral Montipora capitata. PeerJ 8, e9415. https://doi.org/10.7717/peerj.9415 (2020).
Google Scholar
Vermeij, M. J. A., Fogarty, N. D. & Miller, M. W. Pelagic conditions affect larval behavior, survival, and settlement patterns in the Caribbean coral Montastraea faveolata. Mar. Ecol. Prog. Ser. 310, 119–128. https://doi.org/10.3354/meps310119 (2006).
Google Scholar
Torres, J. L., Armstrong, R. A. & Weil, E. Enhanced ultraviolet radiation can terminate sexual reproduction in the broadcasting coral species Acropora cervicornis (Lamarck). J. Exp. Mar. Biol. Ecol. 358, 39–45. https://doi.org/10.1016/j.jembe.2008.01.022 (2008).
Google Scholar
Wellington, G. M. & Fitt, W. K. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192. https://doi.org/10.1007/s00227-003-1150-4 (2003).
Google Scholar
Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516. https://doi.org/10.1017/S0967199415000477 (2016).
Google Scholar
Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: influence of temperature. Biol. Bull. 222, 192–202. https://doi.org/10.1086/BBLv222n3p192 (2012).
Google Scholar
Bouwmeester, J. et al. Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs https://doi.org/10.1007/s00338-021-02129-3 (2021).
Google Scholar
Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102. https://doi.org/10.3354/meps235093 (2002).
Google Scholar
Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2435.13653 (2020).
Google Scholar
Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338. https://doi.org/10.1038/s41598-018-25414-8 (2018).
Google Scholar
de la Cruz, D. W. & Harrison, P. L. Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Sci. Rep. 7, 13985. https://doi.org/10.1038/s41598-017-14546-y (2017).
Google Scholar
Villanueva, R. D., Baria, M. V. B. & de la Cruz, D. W. Growth and survivorship of juvenile corals outplanted to degraded reef areas in Bolinao-Anda Reef Complex, Philippines. Mar. Biol. Res. 8, 877–884. https://doi.org/10.1080/17451000.2012.682582 (2012).
Google Scholar
Chamberland, V. F. et al. Restoration of critically endangered elkhorn coral (Acropora palmata) populations using larvae reared from wild-caught gametes. Global Ecol. Conserv. 4, 526–537. https://doi.org/10.1016/j.gecco.2015.10.005 (2015).
Google Scholar
Hunter, C. L. & Evans, C. W. Coral reefs in Kaneohe Bay, Hawaii: two centuries of western influence and two decades of data. Bull. Mar. Sci. 57, 501–515 (1995).
Rodgers, K. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13. https://doi.org/10.2984/69.1.1 (2015).
Google Scholar
Maragos, J. E. et al. 2000–2002 rapid ecological assessment of corals (Anthozoa) on shallow reefs of the Northwestern Hawaiian Islands. Part 1: species and distribution. Pac. Sci. 58, 211–230. https://doi.org/10.1353/psc.2004.0020 (2004).
Google Scholar
Richards Donà, A. Investigation into the functional role of chromoproteins in the physiology and ecology of the Hawaiian stony coral Montipora flabellata in Kāne‘ohe Bay, O‘ahu, University of Hawaiʻi at Mānoa, (2019).
Padilla-Gamiño, J. L. & Gates, R. D. Spawning dynamics in the Hawaiian reef-building coral Montipora capitata. Mar. Ecol. Prog. Ser. 449, 145–160. https://doi.org/10.3354/meps09530 (2012).
Google Scholar
Krupp, D. A. Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2, 159–164. https://doi.org/10.1007/BF00336722 (1983).
Google Scholar
Kolinski, S. P. & Cox, E. F. An update on modes and timing of gamete and planula release in Hawaiian scleractinian corals with implications for conservation and management. Pac. Sci. 57, 17–27. https://doi.org/10.1353/psc.2003.0005 (2003).
Google Scholar
Heyward, A. J. Sexual reproduction in five species of the coral Montipora. Coral Reef Popul. Biol. Hawaii Inst. Mar. Biol. Tech. Rep. 37, 170–178 (1985).
Marquis, R. J. Phenological variation in the neotropical understory shrub Piper arielanum: causes and consequences. Ecology 69, 1552–1565. https://doi.org/10.2307/1941653 (1988).
Google Scholar
Padilla-Gamiño, J. L. et al. Sedimentation and the reproductive biology of the Hawaiian reef-building coral Montipora capitata. Biol. Bull. 226, 8–18. https://doi.org/10.1086/BBLv226n1p8 (2014).
Google Scholar
Humason, G. L. Animal Tissue Techniques. 661 (W. H. Freeman & Co, 1979).
Abramoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
Szmant-Froelich, A., Reutter, M. & Riggs, L. Sexual reproduction of Favia fragum (Esper): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico. Bull. Mar. Sci. 37, 880–892 (1985).
Vargas-Ángel, B., Colley, S. B., Hoke, S. M. & Thomas, J. D. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25, 110–122. https://doi.org/10.1007/s00338-005-0070-9 (2006).
Google Scholar
Baird, A. H., Blakeway, D. R., Hurley, T. J. & Stoddart, J. A. Seasonality of coral reproduction in the Dampier Archipelago, northern Western Australia. Mar. Biol. 158, 275–285. https://doi.org/10.1007/s00227-010-1557-7 (2011).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org, 2019).
An {R} Companion to Applied Regression. Third Edition (Sage, Thousand Oaks (CA), 2019).
Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.3.7. https://CRAN.R-project.org/package=rcompanion. (2019).
Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawaiʻi. PeerJ 3, e1136. https://doi.org/10.7717/peerj.1136 (2015).
Google Scholar
Bahr, K. D., Rodgers, K. S. & Jokiel, P. L. Impact of three bleaching events on the reef resiliency of Kāne‘ohe Bay, Hawai‘i. Front. Mar. Sci. 4, 398. https://doi.org/10.3389/fmars.2017.00398 (2017).
Google Scholar
Bachtiar, I. Reproduction of three scleractinian corals (Acropora cytherea, A. nobilis, Hydnophora rigida) in easter Lombok Strait, Indonesia. Indones. J. Mar. Sci. 6, 18–27 (2001).
Baird, A. H., Marshall, P. A. & Wolstenholme, J. in Proceedings of the 9th International Coral Reef Symposium Vol. 1, 385–389 (2002).
Mangubhai, S. & Harrison, P. L. Asynchronous coral spawning patterns on equatorial reefs in Kenya. Mar. Ecol. Prog. Ser. 360, 85–96. https://doi.org/10.3354/meps07385 (2008).
Google Scholar
Prasetia, R., Sinniger, F. & Harii, S. Gametogenesis and fecundity of Acropora tenella (Brook 1892) in a mesophotic coral ecosystem in Okinawa, Japan. Coral Reefs 35, 53–62. https://doi.org/10.1007/s00338-015-1348-1 (2016).
Google Scholar
Parker, G. A. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J. Theor. Biol. 96, 281–294. https://doi.org/10.1016/0022-5193(82)90225-9 (1982).
Google Scholar
Hayward, A. & Gillooly, J. F. The cost of sex: quantifying energetic investment in gamete production by males and females. PLoS ONE 6, e16557. https://doi.org/10.1371/journal.pone.0016557 (2011).
Google Scholar
Fenner, D. P. Corals of Hawai’i. A field guide to the hard, black, and soft corals of Hawai’i and the northwest Hawaiian Islands, including Midway (Mutual Publishing Company, 2005).
Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386. https://doi.org/10.1111/j.1461-0248.2012.01861.x (2012).
Google Scholar
Okubo, N., Motokawa, T. & Omori, M. When fragmented coral spawn? effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa. Mar. Biol. 151, 353–363. https://doi.org/10.1007/s00227-006-0490-2 (2006).
Google Scholar
Szmant-Froelich, A., Yevich, P. & Pilson, M. E. Q. Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia). Biol. Bull. 158, 257–269. https://doi.org/10.2307/1540935 (1980).
Google Scholar
Kojis, B. L. Sexual reproduction in Acropora (Isopora) (Coelenterata: Scleractinia). Mar. Biol. 91, 311–318. https://doi.org/10.1007/BF00428624 (1986).
Google Scholar
Neves, E. & Pires, D. Sexual reproduction of Brazilian coral Mussismilia hispida (Verrill, 1902). Coral Reefs 21, 161–168. https://doi.org/10.1007/s00338-002-0217-x (2002).
Google Scholar
Pennington, J. T. The ecology of fertilization of Echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. 169, 417–430. https://doi.org/10.2307/1541492 (1985).
Google Scholar
Oliver, J. & Babcock, R. C. Aspects of the fertilization ecology of broadcast spawning corals: sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417. https://doi.org/10.2307/1542017 (1992).
Google Scholar
Lasker, H. R. et al. In situ rates of fertilization among broadcast spawning Gorgonian corals. Biol. Bull. 190, 45–55. https://doi.org/10.2307/1542674 (1996).
Google Scholar
Gorbunov, M. Y. & Falkowski, P. G. Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47, 309–315. https://doi.org/10.4319/lo.2002.47.1.0309 (2002).
Google Scholar
van Woesik, R., Lacharmoise, F. & Köksal, S. Annual cycles of solar insolation predict spawning times of Caribbean corals. Ecol. Lett. 9, 390–398. https://doi.org/10.1111/j.1461-0248.2006.00886.x (2006).
Google Scholar
Wolstenholme, J. K. Temporal reproductive isolation and gametic compatibility are evolutionary mechanisms in the Acropora humilis species group (Cnidaria; Scleractinia). Mar. Biol. 144, 567–582. https://doi.org/10.1007/s00227-003-1209-2 (2004).
Google Scholar
Colley, S. B., Feingold, J. S., Peña, J. & Glynn, P. W. in Proceedings of the 9th International Coral Reef Symposium Vol. 1, 23–27 (2000).
Chaves-Fonnegra, A., Maldonado, M., Blackwelder, P. & Lopez, J. V. Asynchronous reproduction and multi-spawning in the coral-excavating sponge Cliona delitrix. J. Mar. Biol. Assoc. U.K. 96, 515–528. https://doi.org/10.1017/S0025315415000636 (2016).
Google Scholar
Chamberland, V. F., Snowden, S., Marhaver, K. L., Petersen, D. & Vermeij, M. J. A. The reproductive biology and early life ecology of a common Caribbean brain coral, Diploria labyrinthiformis (Scleractinia: Faviinae). Coral Reefs 36, 83–94. https://doi.org/10.1007/s00338-016-1504-2 (2017).
Google Scholar
Sherman, C. D. H. Mating system variation in the hermaphroditic brooding coral, Seriatopora hystrix. Heredity 100, 296–303. https://doi.org/10.1038/sj.hdy.6801076 (2008).
Google Scholar
Yeoh, S.-R. & Dai, C.-F. The production of sexual and asexual larvae within single broods of the scleractinian coral, Pocillopora damicornis. Mar. Biol. 157, 351–359. https://doi.org/10.1007/s00227-009-1322-y (2010).
Google Scholar
Henley, E. M. et al. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci. Rep. 11, 12525. https://doi.org/10.1038/s41598-021-91030-8 (2021).
Google Scholar
Coma, R. & Lasker, H. R. Effects of spatial distribution and reproductive biology on in situ fertilization rates of a broadcast-spawning invertebrate. Biol. Bull. 193, 20–29. https://doi.org/10.2307/1542733 (1997).
Google Scholar
Westneat, M. W. & Resing, J. M. Predation on coral spawn by planktivorous fish. Coral Reefs 7, 89–92. https://doi.org/10.1007/BF00301646 (1988).
Google Scholar
Fitzhugh, G. R., Shertzer, K. W., Kellison, G. T. & Wyanski, D. M. Review of size- and age-dependence in batch spawning: implications for stock assessment of fish species exhibiting indeterminate fecundity. Fish. Bull. 110, 413–425 (2012).
Alvarado, E. M., García, R. & Acosta, A. Sexual reproduction of the reef-building coral Diploria labyrinthiformis (Scleractinia:Faviidae), in the Colombian Caribbean. Rev. Biol. Trop. 52, 859–868 (2004).
Google Scholar
Maragos, J. E. A Study of the Ecology of Hawaiian Reef Corals, University of Hawaiʻi at Mānoa, (1972).
Jokiel, P. L. & Brown, E. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Chang. Biol. 10, 1627–1641. https://doi.org/10.1111/j.1365-2486.2004.00836.x (2004).
Google Scholar
Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410. https://doi.org/10.1016/S0169-5347(99)01683-3 (1999).
Google Scholar
Berec, L., Angulo, E. & Courchamp, F. Multiple Allee effects and population management. Trends Ecol. Evol. 22, 185–191. https://doi.org/10.1016/j.tree.2006.12.002 (2007).
Google Scholar
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80. https://doi.org/10.1126/science.aan8048 (2018).
Google Scholar
Source: Ecology - nature.com